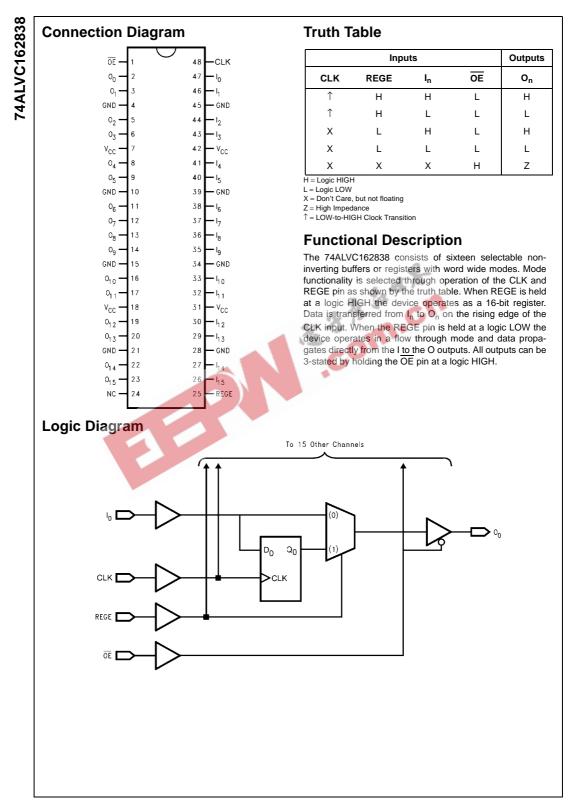

November 2001 =AIRCHILD **Revised November 2001** SEMICONDUCTOR 74ALVC162838 Low Voltage 16-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs General Description Features The ALVC162838 contains sixteen non-inverting selectable Compatible with PC100 and PC133 DIMM module buffered or registered paths. The device can be configured specifications to operate in a registered, or flow through buffer mode by ■ 1.65V–3.6V V_{CC} supply operation utilizing the register enable (REGE) and Clock (CLK) sig-3.6V tolerant inputs and outputs nals. The device operates in a 16-bit word wide mode. All \blacksquare 26 Ω series resistors in the outputs outputs can be placed into 3-State through the use of the OE pin. These devices are ideally suited for buffered or ■ t_{PD} (CLK to O_n) registered 168 pin and 200 pin SDRAM DIMM memory 4.4 ns max for 3.0V to 3.6V $V_{\mbox{CC}}$ modules 5.9 ns max for 2.3V to 2.7V V_{CC} The 74ALVC162838 is designed for low voltage (1.65V to 9.8 ns max for 1.65V to 1.95V V_{CC} 3.6V) V_{CC} applications with I/O compatibility up to 3.6V. The ALVC162838 is also designed with 26Ω series resis-Power-off high impedance inputs and outputs tors in the outputs. This design reduces line noise in appli-Supports live insertion and withdrawal (Note 1) cations such as memory address drivers, clock drivers, and Uses patented noise/EMI reduction circuitry bus transceivers/transmitters. Latchup conforms to JEDEC JED78 The 74ALVC162838 is fabricated with an advanced CMOS technology to achieve high speed operation while maintain-ESD performance: ing low CMOS power dissipation. Human body model > 2000V Machine model > 200V Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor. The minimum value of the resistor is determined by the current -sourcing capability of the driver

Ordering Code:

Ordering Code	Package Number	Package Descriptions
74ALVC162838T	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available in	Tape and Reel. Specify b	y appending suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

Pin Names	Description
OE	Output Enable Input (Active LOW)
I ₀ –I ₁₅	Inputs
O ₀ -O ₁₅	Outputs
CLK	Clock Input
REGE	Register Enable Input

Resistors in the Outputs 74ALVC162838 Low Voltage 16-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
$V_{I} < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operating Conditions (Note 4) Power Supply

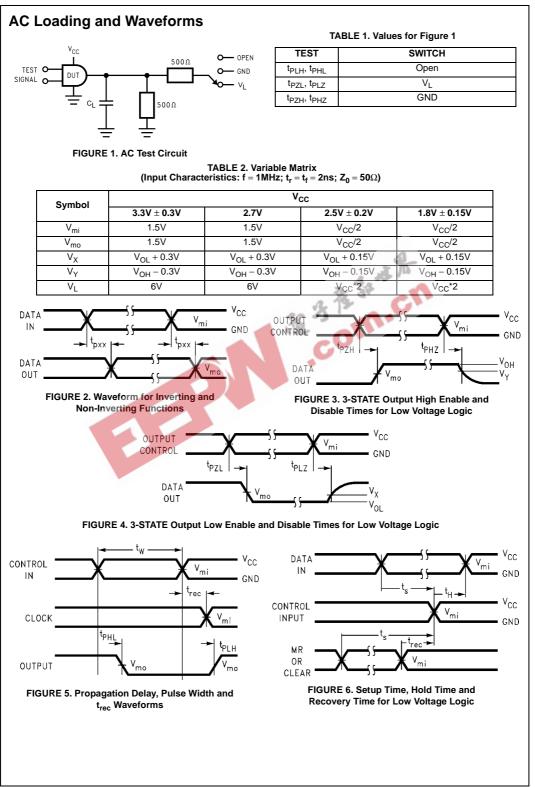
Power Suppry	
Operating	1.65V to 3.6V
Input Voltage	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Free Air Operating Temperature (T_A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V
Note 2: The Absolute Maximum Patings are then	a values beyond which

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The "Recommended Operating Conditions" table will define the condi-tions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

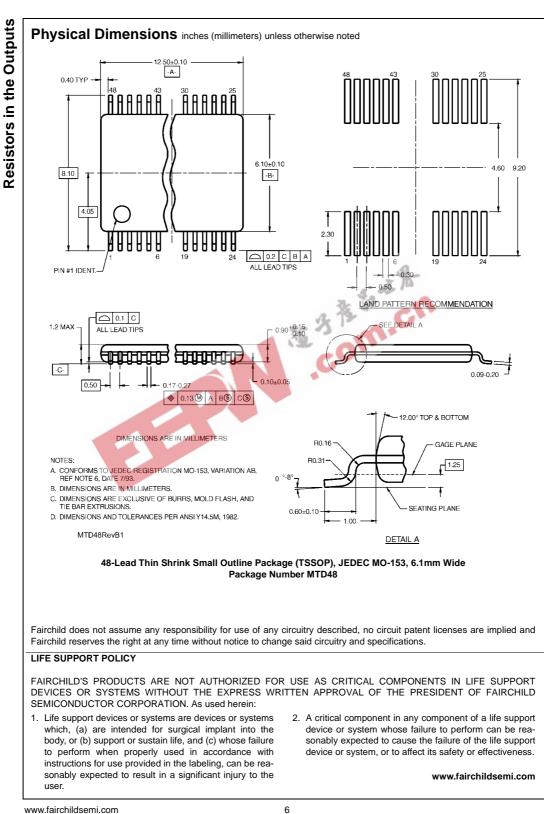
Note 4: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics


Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage	36 B	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6	0.65 x V _{CC} 1.7 2.0		V
V _{IL}	LOW Level Input Voltage	SC	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6		0.35 x V _{CC} 0.7 0.8	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$ $I_{OH} = -2 m A$ $I_{OH} = -4 m A$	1.65 - 3.6 1.65 2.3	V _{CC} - 0.2 1.2 1.9		
	3-	$I_{OH} = -6 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	2.3 3.0 2.7	1.7 2.4 2		V
		$I_{OH} = -12 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA I _{OL} = 2 mA	1.65 - 3.6 1.65		0.2 0.45	
		I _{OL} = 4 mA I _{OL} = 6 mA	2.3 2.3 3.0		0.4 0.55 0.55	V
		$I_{OL} = 8 \text{ mA}$ $I_{OL} = 12 \text{ mA}$	2.7 3.0		0.6	
I	Input Leakage Current	$0 \le V_{I} \le 3.6V$	1.65 - 3.6		±5.0	μA
loz	3-STATE Output Leakage	$0 \le V_0 \le 3.6V$, $V_I = V_{IH}$ or V_{IL}	1.65 - 3.6		±10	μA
OFF	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	mA
lcc	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μA

74ALVC162838

www.fairchildsemi.com


$\begin{array}{ c c c c c c c } \hline V_{CC} = 3.3 \forall \pm 0.3 \forall & V_{CC} = 2.7 \forall & V_{CC} = 2.5 \pm 0.2 \forall & V_{CC} = 1.8 \forall \pm 0.15 \forall \\ \hline Min & Max & Min & Max & Min & Max & Min & Max & Min & Max \\ \hline MAX & Maximum Clock Frequency & 250 & 200 & 200 & 100 & 0 & 0 \\ \hline M_{HL, tp_{LH}} & Propagation Delay & & & & & & \\ Bus-to-Bus (REGE = 0) & 1.3 & 4.0 & 1.5 & 5.4 & 1.0 & 4.9 & 1.5 & 9.8 & ns \\ \hline t_{PHL, tp_{LH}} & Propagation Delay & & & & & \\ Clock to Bus (REGE = 1) & 1.3 & 4.4 & 1.5 & 5.9 & 1.0 & 5.4 & 1.5 & 9.8 & ns \\ \hline t_{PHL, tp_{LH}} & Propagation Delay & & & & & \\ REGE to Bus & 1.3 & 4.4 & 1.5 & 5.9 & 1.0 & 5.4 & 1.5 & 9.8 & ns \\ \hline t_{PLL, tp_{LH}} & Output Enable Time & 1.3 & 4.5 & 1.5 & 6.2 & 1.0 & 5.7 & 1.5 & 9.8 & ns \\ \hline t_{PLL, tp_{LH}} & Output Disable Time & 1.3 & 4.6 & 1.5 & 5.1 & 1.0 & 4.6 & 1.5 & 8.3 & ns \\ \hline t_{PLL, tp_{LH}} & Output Disable Time & 1.0 & 1.0 & 1.0 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 \\ \hline t_{H} & Hold Time & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 \\ \hline t_{H} & Hold Time & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 \\ \hline t_{H} & Pulse Width & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 4.0 & 1.5 \\ \hline t_{H} & Input Capacitance & V_{I} = 0V \ OV \ V_{CC} & V_{CC} & & & & & & & \\ \hline t_{Q} & V_{Q} = 0V \ OV \ V_{CC} & V_{CC} & & & & & & & & & \\ \hline t_{Q} & Input Capacitance & V_{I} = 0V \ OV \ C_{CC} & & & & & & & & & & & & \\ \hline t_{Q} & Input Capacitance & V_{I} = 0V \ OV \ V_{CC} & & & & & & & & & & & & & & & \\ \hline t_{Q} & Output Capacitance & V_{I} = 0V \ OV \ V_{CC} & & & & & & & & & & & & & & & & & & $					$T_A = $	-40°C to +	85°C, R _L =	500 Ω			
$ \begin{array}{ c c c c c c c } \hline V_{CC} = 3.3 \lor \pm 0.3 \lor \\ \hline V_{CC} = 3.3 \lor \pm 0.3 \lor \\ \hline V_{CC} = 3.3 \lor \pm 0.3 \lor \\ \hline V_{CC} = 2.7 \lor \\ \hline V_{CC} = 2.5 \pm 0.2 \lor \\ \hline V_{CC} = 1.8 \lor \pm 0.15 \lor \\ \hline V_{CC} = 1.8 \lor \\ \hline V_{CC} = 1.8 \lor \pm 0.15 \lor \\ \hline V_{CC} = 1.8 $		Parameter									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol		V _{CC} = 3.	$3V \pm 0.3V$	V _{CC}	= 2.7V	$V_{CC}=2.5\pm0.2V$		$V_{CC}=1.8V\pm0.15V$		Units
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Min	Max	Min	Max	Min	Max	Min	Max	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	f _{MAX}	Maximum Clock Frequency	250		200		200		100		MHz
$\begin{array}{ c c c c c c c } \hline Bus-to-Bus (REGE = 0) & & & & & & & & & & & & & & & & & & $	t _{PHL} , t _{PLH}	Propagation Delay	1.2	4.0	4.5	5.4	1.0	4.0	1.5	0.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Bus-to-Bus (REGE = 0)	1.3	4.0	1.5	5.4	1.0	4.9	1.5	9.8	ns
$\begin{tabular}{ c c c c c c c c c c } \hline Clock to Bus (REGE = 1) & & & & & & & & & & & & & & & & & & $	t _{PHL} , t _{PLH}	Propagation Delay	13	4.4	15	5.0	1.0	54	15	0.8	20
REGE to Bus 1.3 4.4 1.5 5.9 1.0 5.4 1.5 9.8 ns t_{PZL}, t_{PZH} Output Enable Time 1.3 4.5 1.5 6.2 1.0 5.7 1.5 9.8 ns t_{PLZ}, t_{PHZ} Output Enable Time 1.3 4.6 1.5 5.1 1.0 5.7 1.5 9.8 ns t_{PLZ}, t_{PHZ} Output Disable Time 1.3 4.6 1.5 5.1 1.0 4.6 1.5 8.3 ns t_{PLZ}, t_{PHZ} Output Disable Time 1.0 1.0 1.0 4.6 1.5 8.3 ns t_{S} Setup Time 1.0 1.0 1.0 1.0 1.0 ns t_{M}		Clock to Bus (REGE = 1)	1.5	4.4	1.5	5.9	1.0	5.4	1.5	9.0	115
$\begin{tabular}{ c c c c c c c c c c c } \hline REGE to Bus & & & & & & & & & & & & & & & & & & &$	t _{PHL} , t _{PLH}	Propagation Delay	13	4.4	15	5.0	1.0	54	15	0.8	20
$\begin{tabular}{ c c c c c c c c c c c } \hline t_{PLZ}, t_{PHZ} & Output Disable Time & 1.3 & 4.6 & 1.5 & 5.1 & 1.0 & 4.6 & 1.5 & 8.3 & ns \\ \hline t_{PLZ}, t_{PHZ} & Setup Time & 1.0 & 1.0 & 1.0 & 1.0 & 2.5 & ns \\ \hline t_S & Setup Time & 0.7 & 0.7 & 0.7 & 0.7 & 1.0 & ns \\ \hline t_H & Hold Time & 0.7 & 0.7 & 0.7 & 1.0 & ns \\ \hline t_W & Pulse Width & 1.5 & 1.5 & 1.5 & 4.0 & ns \\ \hline \hline Capacitance & & & & & & & \\ \hline Capacitance & & & & & & & & & & \\ \hline Symbol & Parameter & & & & & & & & & & & & & \\ \hline C_{IN} & Input Capacitance & & & & & & & & & & & & & & & & & & &$		REGE to Bus	1.5	4.4	1.5	5.9	1.0	5.4	1.5	9.0	115
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.5	1.5	6.2	1.0	5.7	1.5	9.8	ns
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.6	1.5	5.1	1.0	4.6	1.5	8.3	ns
VHInstruct0.10.11.01.0Unit1.51.51.51.51.51.0CapacitanceSymbolParameterConditions $T_A = +25^{\circ}C$ UnitClinInput Capacitance $V_I = 0V \text{ or } V_{CC}$ 3.36pFCourtOutput Capacitance $V_I = 0V \text{ or } V_{CC}$ 3.37pFCourtOutput CapacitanceOutputs Enabledf = 10 MHz, $C_L = 0 \text{ pF}$ 3.320pF	t _S	Setup Time	1.0		1.0		1.0	S	2.5		ns
Transmitted in the second se	t _H	Hold Time	0.7		0.7		0.7	, pa	1.0		ns
SymbolParameterConditions $T_A = +25^{\circ}C$ Unit C_{IN} Input Capacitance $V_I = 0V \text{ or } V_{CC}$ 3.36pF C_{OUT} Output Capacitance $V_I = 0V \text{ or } V_{CC}$ 3.37pF C_{PD} Power Dissipation CapacitanceOutputs Enabledf = 10 MHz, $C_L = 0 \text{ pF}$ 3.320pF2.520PF	t _W	Pulse Width	1.5		1.5	36	1.5		4.0		ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Capa				26		2				
$ \begin{array}{c c} C_{OUT} & Output Capacitance & V_I = 0 \forall \text{ or } V_{CC} & 3.3 & 7 & pF \\ \hline C_{PD} & Power Dissipation Capacitance & Outputs Enabled & f = 10 \text{ MHz}, C_L = 0 \text{ pF} & 3.3 & 20 \\ \hline 2.5 & 20 & PF \end{array} $	Cumhal	Devemeter			- AND	Constit			T _A = +	25°C	11
$\begin{array}{c c} C_{PD} & Power \ \text{Dissipation Capacitance} & Outputs \ \text{Enabled} & f = 10 \ \text{MHz}, \ C_L = 0 \ \text{pF} & \hline 3.3 & 20 \\ \hline 2.5 & 20 & \hline \end{array} \\ \end{array} \qquad \qquad$	Symbol	Parameter			- COL		ions	-			Unit
2.5 20 PF	CIN	Input Capacitance				/ _{cc}	ions		V _{CC} 3.3	Typical 6	pF
	C _{IN} C _{OUT}	Input Capacitance Output Capacitance	Quitaute		$I_{\rm I} = 0V \text{ or } V$	/ _{cc}			V _{CC} 3.3 3.3	Typical 6 7	
	C _{IN}	Input Capacitance				/ _{cc}	ions	-	V _{CC} 3.3	Typical 6	pF
	C _{IN} C _{OUT}	Input Capacitance Output Capacitance Power Dissipation Capacitance	Outputs		$I_{\rm I} = 0V \text{ or } V$	/ _{cc}			V _{CC} 3.3 3.3 3.3	Typical 6 7 20	

74ALVC162838

74ALVC162838

www.fairchildsemi.com

6