FAIRCHILD

SEMICONDUCTOR

74ACT18823 18-Bit D-Type Flip-Flop with 3-STATE Outputs

General Description

The ACT18823 contains eighteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP), Clear (CLR), Clock Enable (EN) and Output Enable (OE) are common to each byte and can be shorted together for full 18-bit operation.

Features

- Broadside pinout allows for easy board layout
- Separate control logic for each byte
- Extra data width for wider address/data paths or buses carrying parity

August 1999

Revised October 1999

- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering (Code:			A.S.			
Order Number	Package Number		Package Des	cription			
74ACT18823SSC	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide					
74ACT18823MTD	MTD56	56-Lead Thin Shrink	Small Outline Package (TSSOP), JED	EC MO-153, 6.1mm Wide		
Device also available	in Tape and Reel. Specify b	v appending suffix letter "X	" to the ordering code. Connection [Diagram			
-O OE ₁ -O CLR1 -O EN1 -O EN1	ο ₄ ο ₅ ο ₆ ο ₇ ο ₈ ο ₈ ο ₁₀ ο ₁₁ ↓ ↓ ↓ ↓ ↓	h2 h3 h4 h5 h5 h7 CLS2 CLS2 CLS2 CH2 CLS2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH	CLR, DE, 00 GND 0, 02 V _{CC} 05 04	2 3 4 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Pin Names	Descri	ption	•		47 — I ₅		
OEn	Output Enable Inpu	(Active LOW)	GND - 0		46 — GND 45 — I ₆		
	Clear (Active LOW)				44 - 1 ₇		
	Clock Enable (Activ				43 — I ₈		
		5 LOW)			42 — Ig		
CPn	Clock Pulse Input		0 ₁₀ - 0 ₁₁ -		41 - 40 40 - 411		
I ₀ -I ₁₇	Inputs		GND -		39 — GND		
O ₀ -O ₁₇	Outputs		0 ₁₂ -		38 — I ₁₂		
			0 ₁₃ -		37 — I ₁₃		
			0 ₁₄ -		36 - 1 ₄		
			V _{cc} -		35 — V _{CC}		
					34 — I ₁₅		
			0 ₁₆ -		33 — 1 ₁₆		
			GND -		32 — GND		
			$\overline{O}_{17} = \overline{O}_{22}$		$31 - I_{17}$ $30 - EN_2$		
			CLR ₂ -		30 — EN ₂ 29 — CP ₂		
			CLR2 -	20	23 - 672		
FACT™ is a trademar	k of Fairchild Semiconductor	Corporation.					

74ACT18823 18-Bit D-Type Flip-Flop with 3-STATE Outputs

© 1999 Fairchild Semiconductor Corporation DS500294

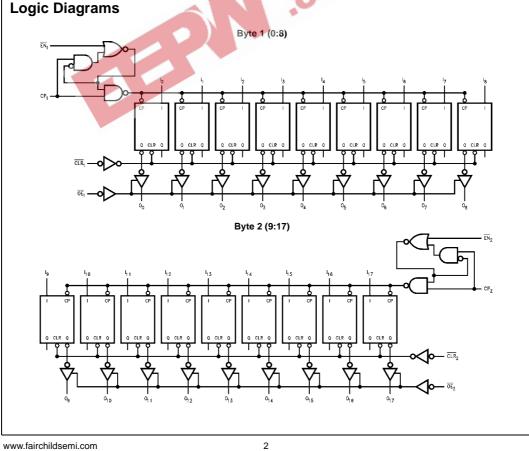
Functional Description

The ACT18823 consists of eighteen D-type edge-triggered flip-flops. These have 3-STATE outputs for bus systems organized with inputs and outputs on opposite sides. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. The buffered clock (CP_n) and buffered Output Enable (\overline{OE}_n) are common to all flip-flops within that byte. The flip-flops will store the state of their individual D inputs that meet set-up and hold time requirements on the LOW-to-HIGH $\ensuremath{\mathsf{CP}}\xspace_n$ transition. With OE_n LOW, the contents of the flip-flops are available at the outputs. When $\overline{\text{OE}}_n$ is HIGH, the outputs go to the impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops. In addition to the Clock and Output Enable pins, there are Clear $(\overline{\text{CLR}}_n)$ and Clock Enable (\overline{EN}_n) pins. These devices are ideal for parity bus interfacing in high performance systems.

When \overline{CLR}_n is LOW and \overline{OE}_n is LOW, the outputs are LOW. When \overline{CLR}_n is HIGH, data can be entered into the flip-flops. When \overline{EN}_n is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the \overline{EN}_n is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Function Table

(Note 1)


	I	Inputs	5	Internal	Output	Function		
OE	CLR	EN	СР	I _n	Q	0 _n	Function	
Н	х	L	\langle	L	L	Z	High Z	
н	х	L	~	н	н	Z	High Z	
н	L	х	х	х	L	Z	Clear	
L	L	х	х	х	L	L	Clear	
н	н	н	х	х	NC	Z	Hold	
L	н	н	х	х	NC	NC	Hold	
н	н	L	~	L	L	Z	Load	
н	н	L	~	н	н	Z	Load	
L	н	L	~	L	L	L	Load	
L	н	L	~	H	н	н	Load	

L= LOW Voltage Level X= Immaterial Z= High Impedance

LOW-to-HIGH Transition

NC= No Change

Note 1: The table represents the logic for one byte. The two bytes are inde-pendent of each other and function identically.

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V_{CC} + 0.5V
DC Output Source/Sink Current (I _O)	\pm 50 mA
DC V _{CC} or Ground Current	
Per Output Pin	± 50 mA
Junction Temperature	
PDIP/SOIC	+140°C
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate (ΔV/Δt)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	
Note 2: Absolute maximum ratings are those value	s beyond which damage

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

2_

DC Electrical Characteristics

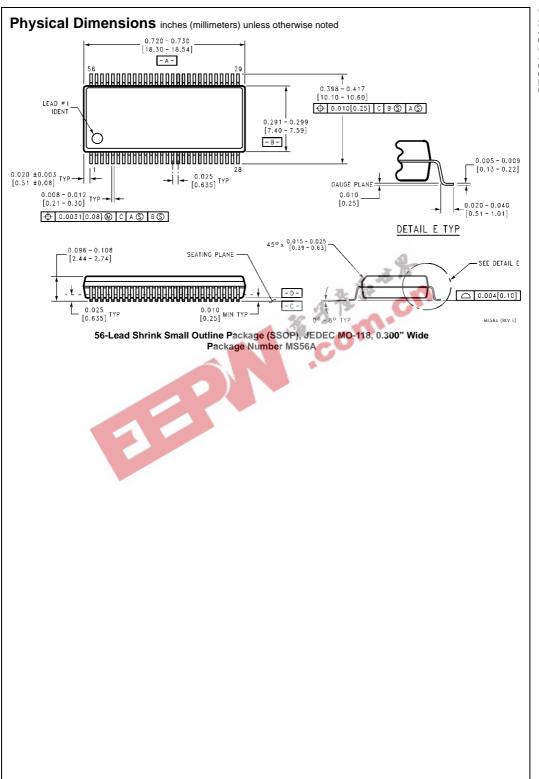
	.5	A Th						
Parameter	V _{CC} T		$T_{A} = +25^{\circ}C$ $T_{A} = -40^{\circ}C$ to +8		Unite	Conditions		
	(V)	(V) Typ G		aranteed Limits	Units	Conditions		
Minimum HIGH	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$		
Input Voltage	5.5	1.5	2.0	2.0	v	or V _{CC} –0.1V		
Maximum LOW	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$		
Input Voltage	5.5	1.5	0.8	0.8	v	or V _{CC} –0.1V		
Minimum HIGH	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA		
Output Voltage	5.5	5.49	5.4	5.4	v	1001 – -20 my		
						$V_{IN} = V_{IL} \text{ or } V_{IH}$		
	4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$		
	5.5		4.86	4.76		I _{OH} = -24 mA (Note 3)		
Maximum LOW	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA		
Output Voltage	5.5	0.001	0.1	0.1	v	1001 - 30 mA		
						$V_{IN} = V_{IL} \text{ or } V_{IH}$		
	4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$		
	5.5		0.36	0.44		I _{OL} = 24 mA (Note 3)		
Maximum 3-STATE	5.5		+0.5	+5.0	ıιΔ	$V_I = V_{IL}, V_{IH}$		
Leakage Current	5.5		±0.5	10.0	μΛ	$V_{O} = V_{CC}, GND$		
Maximum Input Leakage Current	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$		
Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$		
Maximum Quiescent Supply Current	5.5		8.0	80.0	μA	$V_{IN} = V_{CC}$ or GND		
Minimum Dynamic	55			75	mA	V _{OLD} = 1.65V Max		
Output Current (Note 4)	5.5			-75	mA	V _{OHD} = 3.85V Min		
	Parameter Minimum HIGH Input Voltage Maximum LOW Input Voltage Munimum HIGH Output Voltage Maximum LOW Output Voltage Maximum LOW Output Voltage Maximum LOW Output Voltage Maximum Input Leakage Current Maximum Input Leakage Current Maximum Input Leakage Current Maximum Quiescent Supply Current Minimum Dynamic	Parameter (V) Minimum HIGH 4.5 Input Voltage 5.5 Maximum LOW 4.5 Input Voltage 5.5 Minimum HIGH 4.5 Output Voltage 4.5 Maximum LOW 4.5 Output Voltage 4.5 Maximum LOW 4.5 Output Voltage 4.5 Maximum LOW 4.5 Output Voltage 5.5 Maximum S-STATE 5.5 Leakage Current 5.5 Maximum Input Leakage Current 5.5 Maximum Quiescent Supply Current 5.5 Maximum Quiescent Supply Current 5.5	Parameter V _{CC} (V) T _A = - (V) Minimum HIGH 4.5 1.5 Input Voltage 5.5 1.5 Maximum LOW 4.5 1.5 Input Voltage 5.5 1.5 Minimum HIGH 4.5 4.49 Output Voltage 5.5 5.49 Maximum LOW 4.5 5.5 Maximum LOW 5.5 0.001 Output Voltage 5.5 0.001 Maximum LOW 5.5 0.001 Output Voltage 5.5 0.001 Maximum S-STATE 5.5 5.5 Leakage Current 5.5 0.6 Maximum lnput Leakage Current 5.5 0.6 Maximum Quiescent Supply Current 5.5 0.6	Parameter V _{CC} (V) $T_A = +25^{\circ}C$ Minimum HIGH 4.5 1.5 2.0 Input Voltage 5.5 1.5 2.0 Maximum LOW 4.5 1.5 0.8 Input Voltage 5.5 1.5 0.8 Minimum HIGH 4.5 4.49 4.4 Output Voltage 5.5 5.49 5.4 Maximum LOW 4.5 0.001 0.1 Output Voltage 5.5 0.001 0.1 Output Voltage 5.5 0.001 0.1 Maximum LOW 4.5 0.36 5.5 Maximum 3-STATE 5.5 0.36 0.36 Leakage Current 5.5 0.6 10.1 Maximum Input Leakage Current 5.5 0.6 10.1 Maximum Quiescent Supply Current 5.5 0.6 10.1	Parameter V _{CC} (V) $T_A = +25^{\circ}$ C $T_A = -40^{\circ}$ C to +85°C Minimum HIGH 4.5 1.5 2.0 2.0 Input Voltage 5.5 1.5 2.0 2.0 Maximum LOW 4.5 1.5 0.8 0.8 Input Voltage 5.5 1.5 0.8 0.8 Input Voltage 5.5 1.5 0.8 0.8 Input Voltage 5.5 1.5 0.8 0.8 Minimum HIGH 4.5 4.49 4.4 4.4 Output Voltage 5.5 5.49 5.4 5.4 Maximum LOW 4.5 0.001 0.1 0.1 Output Voltage 4.5 0.001 0.1 0.1 Output Voltage 4.5 0.001 0.1 0.1 Output Voltage 5.5 0.001 0.1 0.1 Output Voltage 4.5 0.001 0.1 0.1 Maximum LOW 5.5 0.001 0.1 0.1 <t< td=""><td>Parameter V_{CC} (V) $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (V) Units Minimum HIGH 4.5 1.5 2.0 2.0 V Input Voltage 5.5 1.5 2.0 2.0 V Maximum LOW 4.5 1.5 0.8 0.8 V Minimum HIGH 4.5 1.5 0.8 0.8 V Minimum HIGH 4.5 1.5 0.8 0.8 V Minimum HIGH 4.5 4.49 4.4 4.4 V Output Voltage 5.5 1.5 0.8 0.8 V Maximum LOW 4.5 5.49 5.4 5.4 V Output Voltage 4.5 0.001 0.1 0.1 V Maximum LOW 5.5 0.001 0.1 0.1 V Output Voltage 4.5 0.001 0.1 0.1 V Maximum LOW 5.5 0.001 0.1 0.1 V Maximum S-STATE 5.5<</td></t<>	Parameter V _{CC} (V) $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (V) Units Minimum HIGH 4.5 1.5 2.0 2.0 V Input Voltage 5.5 1.5 2.0 2.0 V Maximum LOW 4.5 1.5 0.8 0.8 V Minimum HIGH 4.5 1.5 0.8 0.8 V Minimum HIGH 4.5 1.5 0.8 0.8 V Minimum HIGH 4.5 4.49 4.4 4.4 V Output Voltage 5.5 1.5 0.8 0.8 V Maximum LOW 4.5 5.49 5.4 5.4 V Output Voltage 4.5 0.001 0.1 0.1 V Maximum LOW 5.5 0.001 0.1 0.1 V Output Voltage 4.5 0.001 0.1 0.1 V Maximum LOW 5.5 0.001 0.1 0.1 V Maximum S-STATE 5.5<		

Note 3: All outputs loaded; thresholds associated with output under test. Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

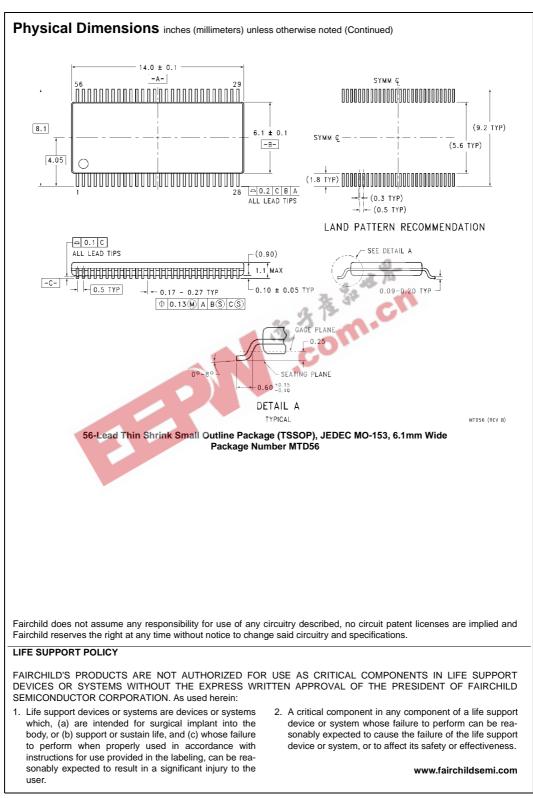
74ACT18823

AC Electrical Characteristics

	Parameter	V _{cc}	T _A = +25°C C _L = 50 pF		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Units	
Symbol		(V)						
		(Note 5)	Min	Max	Min	Max		
f _{MAX}	Maximum Clock	5.0	100		90		MHz	
	Frequency	5.0	100		90		MITZ	
t _{PHL}	Propagation Delay	5.0	2.0	9.0	2.0	9.5	ns	
t _{PLH}	CP _n to O _n	5.0	2.0	9.0	2.0	9.5		
t _{PHL}	Propagation Delay	5.0	2.0	9.0	2.0	9.5		
	CLR _n to O _n	5.0	2.0	9.0	2.0	9.5	ns	
t _{PZL}	Output Enable Time	5.0	2.0	9.0	2.0	10.0		
t _{PZH}		5.0	2.0	9.0	2.0	10.0	ns	
t _{PLZ}	Output Disable Time	5.0	1.5	7.0	1.5	7.5		
t _{PHZ}		5.0	1.5	8.0	1.5	8.5	ns	


AC Operating Requirements

VeHz 1.5 6.0 1.5 8.5 Note 5: Voltage Range 5.0 is 5.0V ± 0.5V. AC Operating Requirements							
Symbol	Parameter	V _{CC} (V) (Note 6)		$T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$ Guarantee	T _A = -40°C to +8 C _L = 50 pF ed Minimum	5°C	Units
t _S	Setup Time, HIGH or LOW, Input to Clock	5.0		3.0	3.0		ns
t _H	Hold Time, HIGH or LOW, Input to Clock	5.0		1.5	1.5		ns
t _S	Setup Time, HIGH or LOW, Enable to Clock	5.0		3.0	3.0		ns
t _H	Hold Time, HIGH or LOW, Enable to Clock	5.0		1.5	1.5		ns
W	CP _n Pulse Width, HIGH or LOW	5.0		4.0	4.0		ns
^t w	CLR _n Pulse Width, HIGH or LOW	5.0		4.0	4.0		ns
t _{rec}	Recovery Time, CLR _n to CP _n	5.0		6.0	6.0		ns


Note 6: Voltage Range 5.0 is 5.0V \pm 0.5V.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Pin Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	95	pF	V _{CC} = 5.0V

⁷⁴ACT18823

