

SCBS143Q-MAY 1992-REVISED OCTOBER 2005

FEATURES

- Members of the Texas Instruments Widebus™
 Family
- State-of-the-Art Advanced BiCMOS
 Technology (ABT) Design for 3.3-V Operation
 and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

SN54LVTH16245A... WD PACKAGE SN74LVTH16245A... DGG, DGV, OR DL PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

ORDERING INFORMATION

T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	FBGA – GRD	Topo and roal	SN74LVTH16245AGRDR	- LL245A	
	FBGA – ZRD (Pb-free)	Tape and reel	SN74LVTH16245AZRDR	LLZ45A	
	CCOD DI	Tana and week	74LVTH16245ADLG4	1.)/T1/4.00.45.A	
	SSOP – DL	Tape and reel	74LVTH16245ADLRG4	LVTH16245A	
			SN74LVTH16245ADGGR		
–40°C to 85°C	TSSOP - DGG	Tape and reel	74LVTH16245ADGGRE4	LVTH16245A	
			74LVTH16245ADGGRG4		
	TVCOD DCV	Tana and week	SN74LVTH16245ADGVR	110454	
	TVSOP – DGV	Tape and reel	74LVTH16245ADGVRE4	LL245A	
	VFBGA – GQL		SN74LVTH16245AKR	110454	
	VFBGA – ZQL (Pb-free)	Tape and reel	74LVTH16245AZQLR	LL245A	
–55°C to 125°C	CFP – WD	Tube	SNJ54LVTH16245AWD	SNJ54LVTH16245AWD	

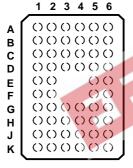
⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The 'LVTH16245A devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.


The devices are designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (\overline{OE}) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ} .

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

GQL OR ZQL PACKAGE (TOP VIEW)

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Bail GQL/ZQL Package)

	1	2	3	4	5	6
A	1DIR	NC	NC	NC	NC	1 OE
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V_{CC}	V_{CC}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
Е	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
Н	2B5	2B6	V_{CC}	V_{CC}	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
K	2DIR	NC	NC	NC	NC	2 OE

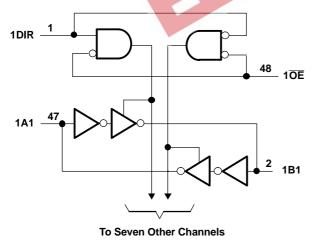
(1) NC - No internal connection

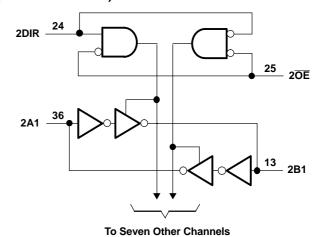
SCBS143Q-MAY 1992-REVISED OCTOBER 2005

GRD OR ZRD PACKAGE (TOP VIEW) 2 3 4 5 000000000000 В 000000 С 000000 D 000000 Ε 000000 F 000000 G 000000 н 000000

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
Α	1B1	NC	1DIR	1 OE	NC	1A1
В	1B3	1B2	NC	NC	1A2	1A3
С	1B5	1B4	V _{CC}	V _{CC}	1A4	1A5
D	1B7	1B6	GND	GND	1A6	1A7
E	2B1	1B8	GND	GND	1A8	2A1
F	2B3	2B2	GND	GND	2A2	2A3
G	2B5	2B4	V _{CC}	V _{CC}	2A4	2A5
Н	2B7	2B6	NC	NC	2A6	2A7
J	2B8	NC	2DIR	2 <mark>OE</mark>	NC	2A8


(1) NC - No internal connection


FUNCTION TABLE⁽¹⁾ (EACH 8-BIT SECTION)

	CONTROL OUTPUT CIRCUITS INPUTS		OPERATION	
ŌĒ	DIR	A PORT	B PORT	
L	L	Enabled	Hi-Z	B data to A bus
L	Н	Hi-Z	Enabled	A data to B bus
Н	X	Hi-Z	Hi-Z	Isolation

(1) Input circuits of the data I/Os always are active.

LOGIC DIAGRAM (POSITIVE LOGIC)

SCBS143Q-MAY 1992-REVISED OCTOBER 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	·		MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range (2)		-0.5	7	V
Vo	Voltage range applied to any output in the high-in	mpedance or power-off state (2)	-0.5	7	V
Vo	Voltage range applied to any output in the high st	tate ⁽²⁾	-0.5	V _{CC} + 0.5	V
	Comment into any system that have been state	SN54LVTH16245A		96	Λ
I _O	Current into any output in the low state	SN74LVTH16245A		128	mA
	Comment into any system that him bette (3)	SN54LVTH16245A		48	Λ
I _O	Current into any output in the high state (3)	SN74LVTH16245A		64	mA
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGG package		70	
		DGV package		58	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package		63	°C/W
		GQL/ZQL package		42	
		GRD/ZRD package		36	
T _{stg}	Storage temperature range	2 32	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) This current flows only when the output is in the high state and V_O > V_{CC}.
 (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVTH	16245A	SN74LVTH1	6245A	LINUT
		MIN	MAX	MIN	MAX	UNIT	
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS143Q-MAY 1992-REVISED OCTOBER 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEOT 04	SN54L	/TH16245	iΑ	SN74L	/TH1624	5A	LINUT	
		TEST CO	MIN	TYP ⁽¹⁾	MAX	MIN	MIN TYP ⁽¹⁾ MAX		UNIT	
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, I_{OH} = -100 \mu\text{A}$		V _{CC} - 0.2			V _{CC} - 0.2			
.,		$V_{CC} = 2.7 \text{ V},$	I _{OH} = -8 mA	2.4			2.4			V
V_{OH}		V _{CC} = 3 V	I _{OH} = -24 mA	2						V
		$V_{CC} = 3 V$	I _{OH} = -32 mA				2			
		V _{CC} = 2.7 V	$I_{OL} = 100 \mu A$			0.2			0.2	
		V _{CC} = 2.7 V	I _{OL} = 24 mA			0.5			0.5	
V			I _{OL} = 16 mA			0.4			0.4	V
V_{OL}		V 2.V	I _{OL} = 32 mA			0.5			0.5	V
		$V_{CC} = 3 V$	I _{OL} = 48 mA			0.55				
			I _{OL} = 64 mA						0.55	
	Control	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND			±1			±1	
	inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10	
I	A or B		V _I = 5.5 V		3.3	20			20	μΑ
		$V_{CC} = 3.6 \text{ V}$	$V_I = V_{CC}$	5			5			
	port		$V_I = 0$	36.75	-	- 5			- 5	
I _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 \vee	C32	410.				±100	μΑ
		V _{CC} = 3 V	V _I = 0.8 V	75			75			
I _{I(hold)}	A or B	v _{CC} = 3 v	V _I = 2 V	-75			-75			μA
·i(riola)	port	$V_{CC} = 3.6 \text{ V},^{(3)}$	$V_1 = 0 \text{ to } 3.6 \text{ V}$						500 -750	μ
I _{OZPU}		$\frac{V_{CC}}{OE} = 0$ to 1.5 V, $V_{O} = \frac{V_{CC}}{OE} = \frac{1.5}{OE} = \frac$	0.5 V to 3 V,			±100 ⁽⁴⁾			±100	μΑ
I _{OZPD}		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V_{O} = $\frac{V_{CC}}{OE}$ = don't care	0.5 V to 3 V,			±100 ⁽⁴⁾			±100	μΑ
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19	
I _{CC}	$I_0 = 0$,	Outputs low	5			5	mA			
		$V_I = V_{CC}$ or GND	Outputs disabled	0.19					0.19	
ΔI _{CC} (5)		$V_{CC} = 3 \text{ V to } 3.6 \text{ V, Or}$ Other inputs at V_{CC} or	ne input at V _{CC} – 0.6 V, GND			0.2			0.2	mA
Ci		V _I = 3 V or 0			4			4		pF
C _{io}		V _O = 3 V or 0			10			10		pF

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. Unused pins at V_{CC} or GND This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to (2) (3)

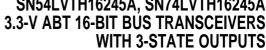
On products compliant to MIL-PRF-38535, this parameter is not production tested.

This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

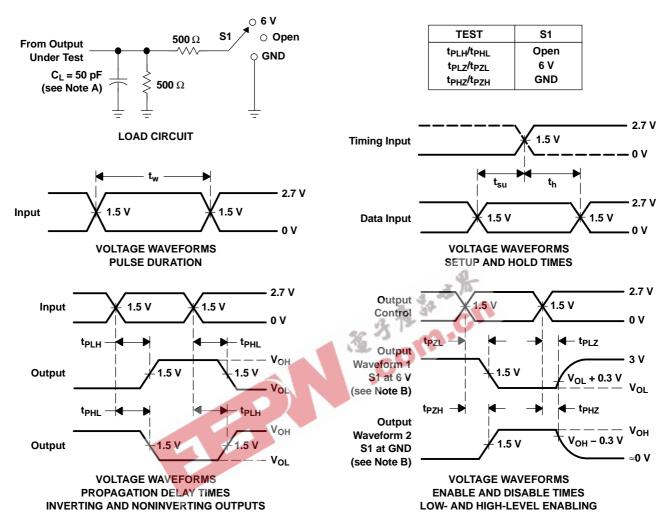
SCBS143Q-MAY 1992-REVISED OCTOBER 2005

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


			SNS	4LVTH	16245	4		SN74L	VTH16	245A		
PARAMETER	FROM TO (OUTPUT)		V _{CC} = 3 ± 0.3	$V_{CC} = 3.3 \text{ V} \\ \pm 0.3 \text{ V} \qquad V_{CC} = 2.7 \text{ V}$		V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	TYP ⁽¹⁾	MAX	MIN	MAX	
t _{PLH}	A or B	B or A	0.5	4.5		4.6	1.5	2.3	3.3		3.7	ns
t _{PHL}	AUID	BOLA	0.5	4.4		3.9	1.3	2.1	3.3		3.5	115
t _{PZH}	ŌĒ	A or B	0.5	6.5		6.6	1.5	2.8	4.5		5.3	ns
t _{PZL}	OL	AUID	0.5	5.4		6.2	1.6	2.9	4.6		5.2	115
t _{PHZ}	ŌĒ	A or B	1	6.8		7	2.3	3.7	5.1		5.5	ns
t _{PLZ}	OE	OE A OI B		6.2		6.3	2.2	3.5	5.1		5.4	115
t _{sk(o)}									0.5		0.5	ns

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.



PARAMETER MEASUREMENT INFORMATION

SCBS143Q-MAY 1992-REVISED OCTOBER 2005

NOTES: A. C₁ includes probe and jig capacitance.

ISTRUMENTS

www.ti.com

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

4-Oct-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9668601QXA	ACTIVE	CFP	WD	48	1	TBD	Call TI	Level-NC-NC-NC
5962-9668601VXA	ACTIVE	CFP	WD	48	1	TBD	Call TI	Level-NC-NC-NC
74LVTH16245ADGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVTH16245ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVTH16245ADGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVTH16245ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVTH16245ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16245ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16245ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16245ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16245ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVTH16245AGQLR	ACTIVE	VFBGA	GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVTH16245AGRDR	ACTIVE	LFBGA	GRD	54	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVTH16245AZQLR	ACTIVE	VFBGA	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SN74LVTH16245AZRDR	ACTIVE	LFBGA	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SNJ54LVTH16245AWD	ACTIVE	CFP	WD	48	1	TBD	Call TI	Level-NC-NC-NC

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on

PACKAGE OPTION ADDENDUM

4-Oct-2005

incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

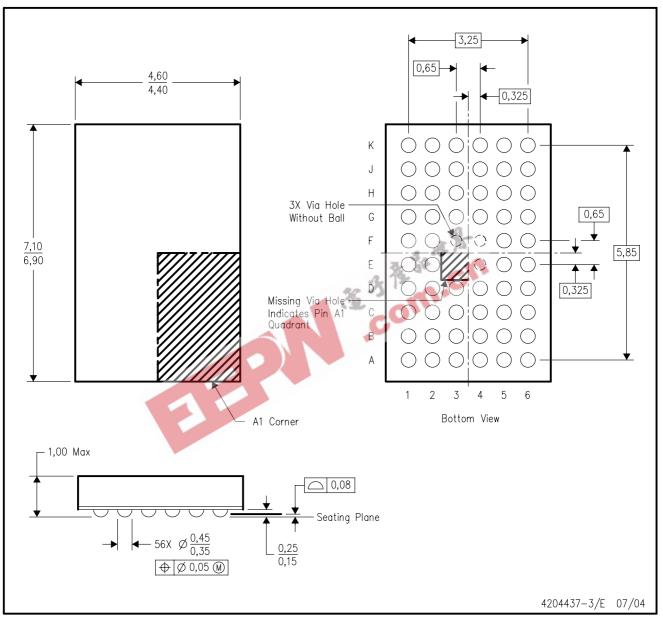
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

WD (R-GDFP-F**)

CERAMIC DUAL FLATPACK

48 LEADS SHOWN

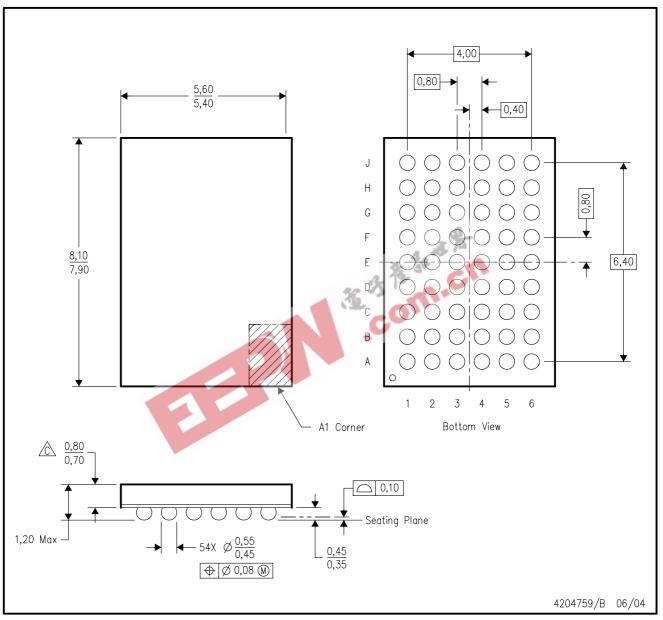
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only
- E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

ZQL (R-PBGA-N56)

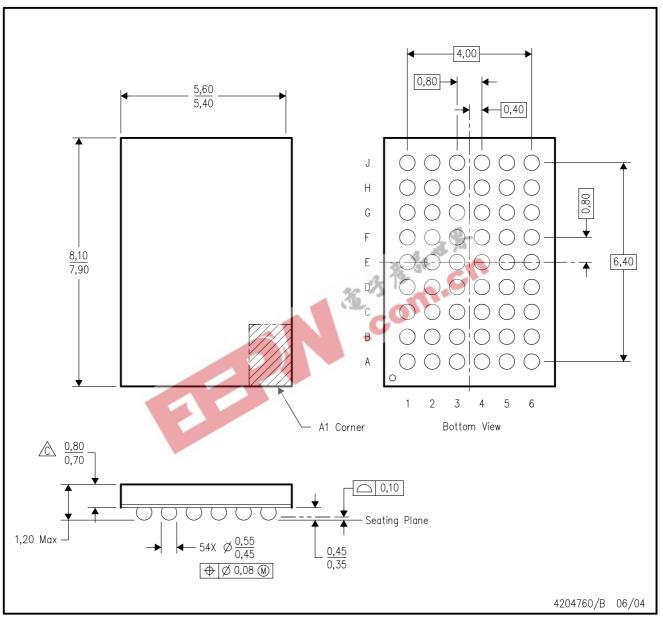
PLASTIC BALL GRID ARRAY



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

GRD (R-PBGA-N54)

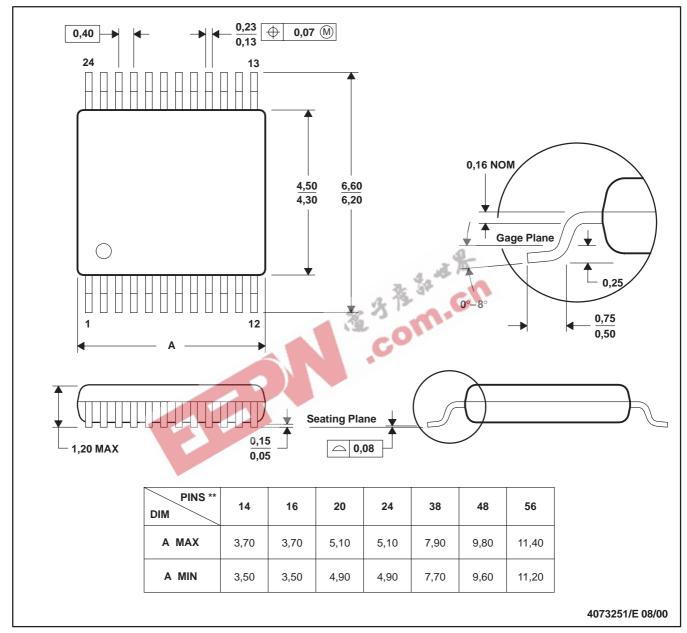
PLASTIC BALL GRID ARRAY



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation DD.
- D. This package is tin-lead (SnPb). Refer to the 54 ZRD package (drawing 4204760) for lead-free.

ZRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation DD.
- D. This package is lead—free. Refer to the 54 GRD package (drawing 4204759) for tin—lead (SnPb).

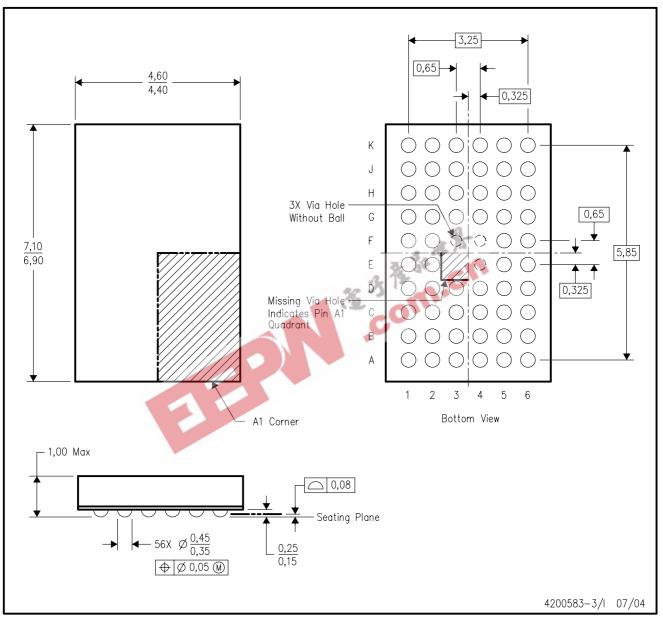
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

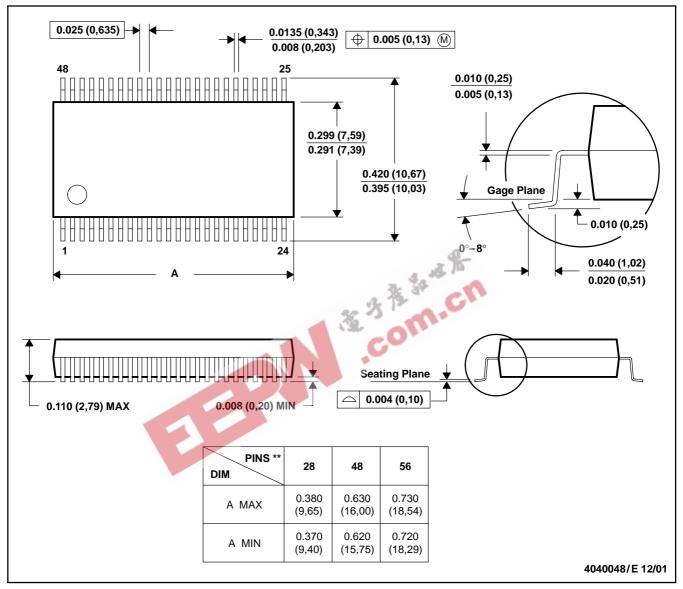
B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

GQL (R-PBGA-N56)

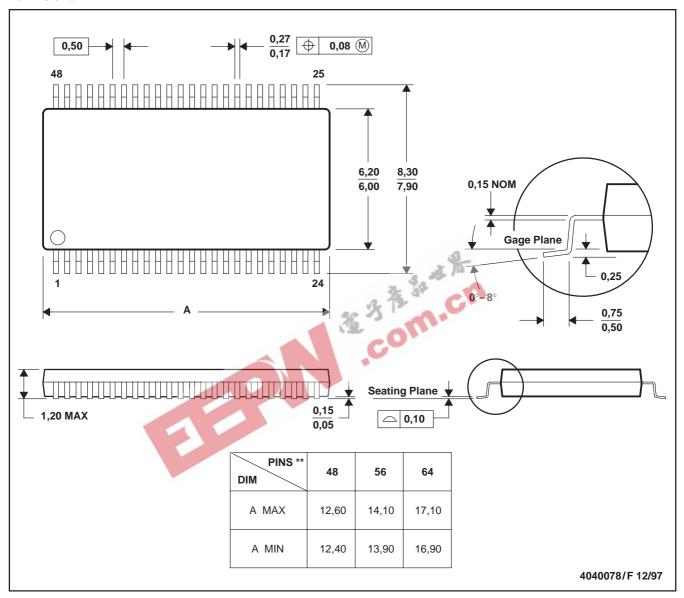
PLASTIC BALL GRID ARRAY


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated