

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operating Conditions (Note 4)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V
Note 2: The Absolute Maximum Ratings are those	e values beyond which

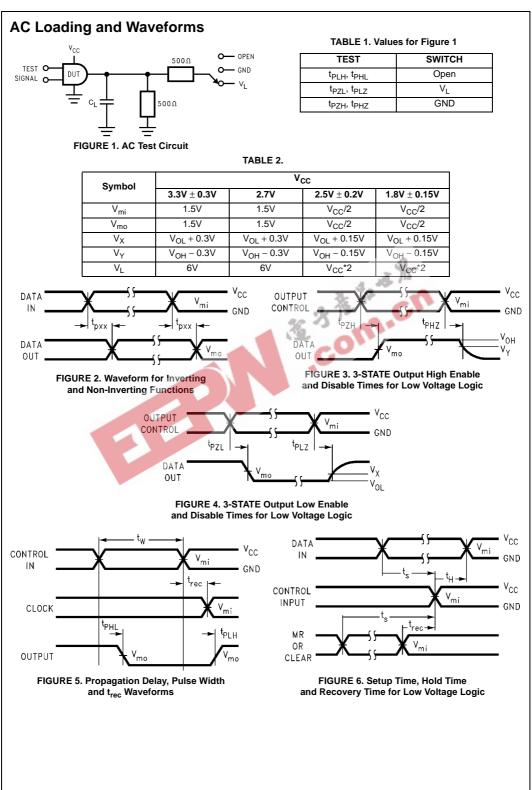
Ν Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The "Recommended Operating Conditions" table will define the condi-tions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be held HIGH or LOW.

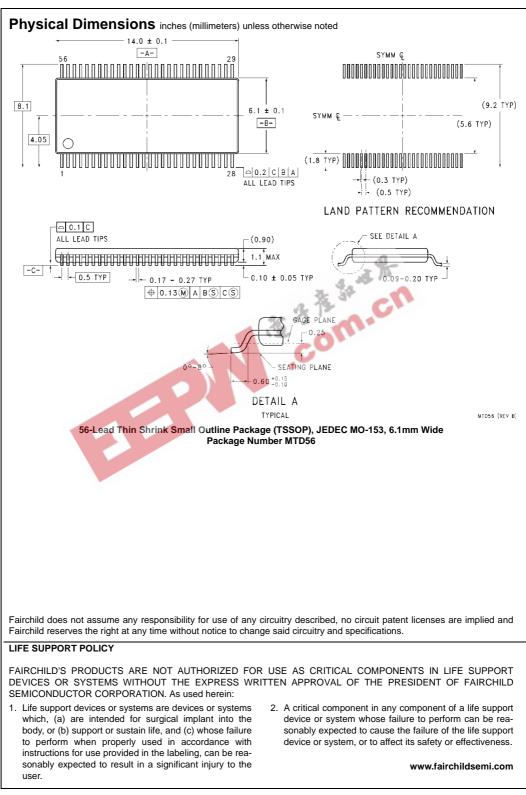
DC Electrical Characteristics

Symbol	Parameter HIGH Level Input Voltage	Conditions	V _{CC} (V)	Min	Max	Units V
V _{IH}		323	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6	0.65 x V _{CC} 1.7 2.0		
V _{IL}	LOW Level Input Voltage	· · ·	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6		0.35 x V _{CC} 0.7 0.8	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = 100 μA I _{OH} = -4 mA I _{OH} = -6 mA	1.65 - 3.6 1.65 2.3	V _{CC} - 0.2 1.2 2.0		
	1-	$I_{OH} = -12 \text{ mA}$	2.3 2.7 3.0	1.7 2.2 2.4		V
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL} LOW Level Ou	LOW Level Output Voltage	$I_{OL} = 100 \ \mu A$ $I_{OL} = 4 \ m A$	1.65 - 3.6 1.65		0.2 0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 12 mA	2.3 2.7		0.7 0.4	
		I _{OL} = 24 mA	3.0		0.55	
I	Input Leakage Current	$0 \le V_l \le 3.6V$	3.6		±5.0	μA
OZ	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μA


<u> </u>
2
ω
ဖ
~
C
-
~
∢
4
r

AC Electrical Characteristics

Symbol	Parameter	$T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $R_L = 500\Omega$								
		C _L = 50 pF				C _L = 30 pF			Units	
		$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$		$V_{CC}=2.5V\pm0.2V$		$V_{CC}=1.8V\pm0.15V$		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		200		100		MHz
t _{PHL} , t _{PLH}	Propagation Delay CLK to O _n	1.3	4.0	1.5	4.9	1.0	4.4	1.5	8.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.2	1.5	5.3	1.0	4.7	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.2	1.5	4.7	1.0	4.2	1.5	7.6	ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns
t _S	Setup Time	1.5		1.5		1.5		2.5		ns
t _H	Hold Time	1.0		1.0		1.0		1.0		ns


Capacitance

Symbol	Parameter		Conditions	TA	T _A = +25°C	
			Conditions	V _{cc}	Typical	Units
CIN	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		V _I = 0V or V _{CC}	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 50 pF	3.3 2.5	20 20	pF
	1					

74ALVC16821

74ALVC16821 Low Voltage 20-Bit D-Type Flip-Flops with 3.6V Tolerant Inputs and Outputs

