

October 2001 Revised May 2005

74ALVC16244

Low Voltage 16-Bit Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16244 contains sixteen non-inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/ receiver. The device is nibble (4-bit) controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

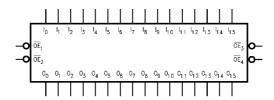
The 74ALVC16244 is designed for low voltage (1.65V to 3.6V) $\rm V_{CC}$ applications with I/O capability up to 3.6V.

The 74ALVC16244 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

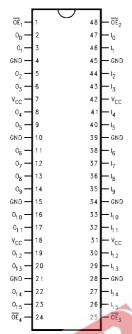
- \blacksquare 1.65V–3.6V $\rm V_{CC}$ supply operation
- 3.6V tolerant inputs and outputs
- tpp
 - 3.0 ns max for 3.0V to 3.6V $\rm V_{CC}$ 3.5 ns max for 2.3V to 2.7V $\rm V_{CC}$
 - 6.0 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
 Latch-up conforms to JEDEC JED98
- ESD performance:
- Human body model > 2000V
- Machine model > 200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Note 1: To ensure the high-impedance state during power up or power down, $O\overline{E}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

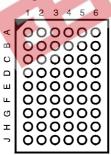


Order Number	Package Number	Package Description
74ALVC16244GX (Note 2)		54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [Tape and Reel]
74ALVC16244MTD (Note 3)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 2: BGA package available in Tape and Reel only


Note 3: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Logic Symbol



Connection Diagrams

Pin Assignment for TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
\overline{OE}_n	Output Enable Input (Active LOW)
I ₀ -I ₁₅	Inputs
O ₀ -O ₁₅	Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	ŌE ₁	OE ₂	NC	I ₀
В	02	O ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	I ₃	I ₄
D	O ₆	O ₅	GND	GND	I ₅	I ₆
E	Ο ₈	O ₇	GND	GND	I ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
Н	O ₁₄	O ₁₃	NC	NC	I ₁₃	I ₁₄
J/L	O ₁₅	NC (OE ₄	ŌE ₃	NC	I ₁₅

Truth Tables

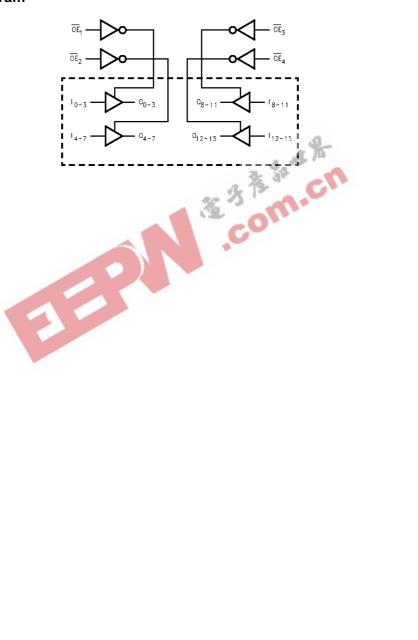
Ing	outs	Outputs		
OE ₁	I ₀ -I ₃	O ₀ -O ₃		
L	L	L		
L	Н	Н		
Н	X	Z		

Inp	outs	Outputs
ŌE ₃	I ₈ -I ₁₁	O ₈ -O ₁₁
L	L	L
L	Н	Н
Н	X	Z

Inp	outs	Outputs
OE ₂	l ₄ -l ₇	O ₄ -O ₇
L	L	L
L	Н	Н
Н	Χ	Z

Inp	outs	Outputs
ŌE ₄	l ₁₂ -l ₁₅	O ₁₂ -O ₁₅
L	L	L
L	Н	Н
Н	X	Z

H = HIGH Voltage Level


X = Immaterial (HIGH or LOW, inputs may not float)
Z = High Impedance

Functional Description

The 74ALVC16244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE out-

puts are controlled by an Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs.

Logic Diagram

Absolute Maximum Ratings(Note 4)

DC Input Diode Current (I_{IK})

 $V_1 < 0V$ –50 mA

DC Output Diode Current (I_{OK})

 $V_O < 0V$ –50 mA

DC Output Source/Sink Current

 (I_{OH}/I_{OL}) ±50 mA

DC V_{CC} or GND Current per

Supply Pin (I $_{CC}$ or GND) ± 100 mA Storage Temperature Range (T $_{STG}$) -65° C to +150 $^{\circ}$ C

Recommended Operating Conditions (Note 6)

Power Supply

 $\begin{array}{ccc} Operating & 1.65V \text{ to } 3.6V \\ Input \ Voltage \ (V_I) & 0V \text{ to } V_{CC} \\ Output \ Voltage \ (V_O) & 0V \text{ to } V_{CC} \\ Free \ Air \ Operating \ Temperature \ (T_A) & -40^{\circ}C \ \text{to } +85^{\circ}C \\ \end{array}$

Minimum Input Edge Rate (Δt/ΔV)

 $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: $I_{\rm O}$ Absolute Maximum Rating must be observed, limited to 4.6V.

Note 6: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage	35 37	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6	0.65 x V _{CC} 1.7 2.0		V
V _{IL}	LOW Level Input Voltage	·co	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6		0.35 x V _{CC} 0.7 0.8	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$ $I_{OH} = -4 mA$ $I_{OH} = -6 mA$	1.65 - 3.6 1.65 2.3	V _{CC} - 0.2 1.2 2.0		
	1	I _{OH} = -12 mA	2.3 2.7 3.0	1.7 2.2 2.4		V
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	$\begin{split} &I_{OL} = 100 \; \mu\text{A} \\ &I_{OL} = 4 \; \text{mA} \end{split}$	1.65 - 3.6 1.65		0.2 0.45	
		$I_{OL} = 6 \text{ mA}$ $I_{OL} = 12 \text{ mA}$	2.3 2.3 2.7		0.4 0.7 0.4	V
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μА
l _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μА
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μА
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μА

AC Electrical Characteristics

		$T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}, R_L = 500\Omega$								
Symbol	Parameter	C _L = 50 pF			C _L = 30 pF				Units	
Oyillboi	mboi Farametei		3V ± 0.3V	V _{CC}	2.7V	V _{CC} = 2.5	5V ± 0.2V	V _{CC} = 1.8	V ± 0.15V	Omia
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay	1.3	3	1.5	3.5	1.0	3.0	1.5	6.0	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.0	1.5	4.6	1.0	4.1	1.5	8.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.0	1.5	4.3	1.0	3.8	1.5	6.8	ns

Capacitance

Cumbal	Dougrantes	Parameter Conditions			T _A = -	Unite	
Symbol	Parameter		Conditions		V _{CC}	Typical	Units
C _{IN}	Input Capacitance		V _I = 0V or V _{CC}		3.3	6	pF
C _{OUT}	Output Capacitance		V _I = 0V or V _{CC}		3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 0 pF		3.3	20	pF
				- 48	2.5	20	þΓ

AC Loading and Waveforms

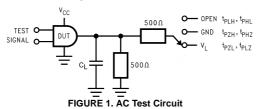


Table 1: Values for Figure 1

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t_{PZL} , t_{PLZ}	V_{L}
t_{PZH} , t_{PHZ}	GND

Table 2: Variable Matrix (Input Characteristics: f = 1MHz; t_r = t_f = 2ns; Z_0 = 50 Ω)

Symbol				
Symbol	$3.3V \pm 0.3V$	2.5V ± 0.2V	1.8V ± 0.15V	
V_{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2
V_{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2
V_X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V
V _Y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V
V_L	6V	6V	V _{CC} *2	V _{CC} *2

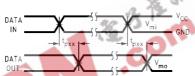


FIGURE 2. Waveform for Inverting and Non-Inverting Functions

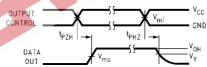


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

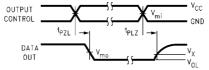
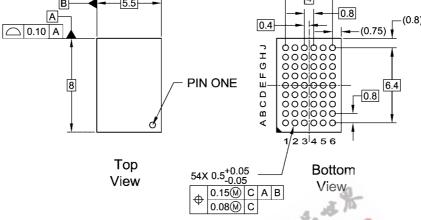
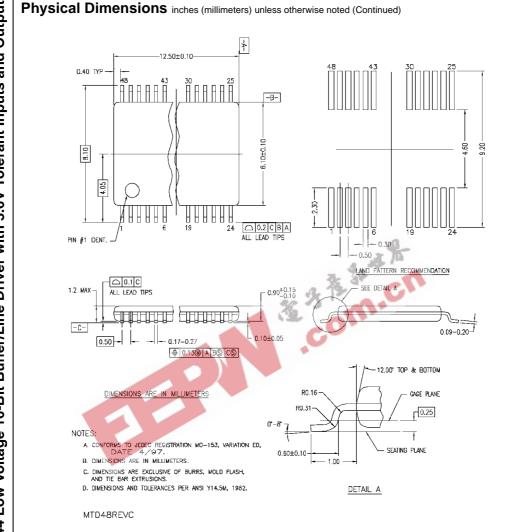



FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Physical Dimensions inches (millimeters) unless otherwise noted 0.10 B В 5.5



- A. THIS PACKAGE CONFORMS TO JEDEC M0-205
 B. ALL DIMENSIONS IN MILLIMETERS
 C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com