FAIRCHILD

SEMICONDUCTOR

74LVTH543 Low Voltage Octal Registered Transceiver with 3-STATE Outputs

General Description

The LVTH543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow.

The LVTH543 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

This octal registered transceiver is designed for low-voltage (3.3V) $V_{\rm CC}$ applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH543 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs

April 2000

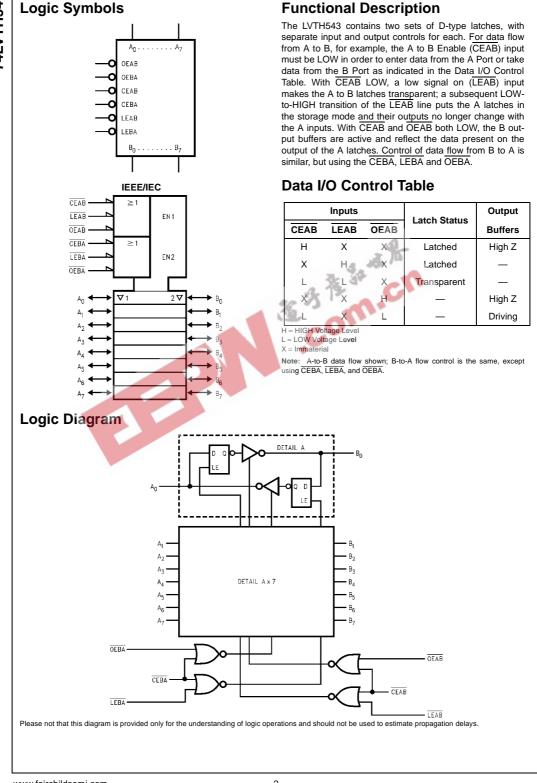
Revised April 2000

- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 543
- Latch-up performance exceeds 500 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVTH543WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVTH543MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Device also available i	n Tape and Reel Specify	by appending suffix letter "X" to the ordering code

Connection Diagram


LEBA -	1	24	-v _{cc}
OEBA -	2	23	- CEBA
A ₀ —	3	22	— в _о
A ₁ —	4	21	— в ₁
A ₂ —	5	20	— в ₂
Α ₃ —	6	19	— в _з
A ₄ —	7	18	— В ₄
A ₅ —	8	17	— в ₅
А ₆ —	9	16	— в ₆
A ₇ —	10	15	— в ₇
CEAB -	11	14	LEAB
GND —	12	13	- OEAB

Pin Descriptions

Pin Names	Description
OEAB, OEBA	Output Enable Inputs
LEAB, LEBA	Latch Enable Inputs
CEAB, CEBA	Chip Enable Inputs
A ₀ -A ₇	Side A Inputs or
	3-STATE Outputs
B ₀ -B ₇	Side B Inputs or
	3-STATE Outputs

© 2000 Fairchild Semiconductor Corporation DS012448

74LVTH543

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{ОК}	DC Output Diode Current	-50	V _O < GND	mA
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter			Max	Units
V _{CC}	Supply Voltage		2.7	3.6	V
VI	Input Voltage	. 4	0	5.5	V
I _{OH}	HIGH Level Output Current	e la		-32	mA
I _{OL}	LOW Level Output Current	1		64	
T _A	Free-Air Operating Temperature	1	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$	5	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 2: I_O Absolute Maximum Rating must be observed.

74LVTH543

74LVTH543

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	T _A =-40°C	C to +85°C	Units	Conditions
Symbol			(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
VIH	Input HIGH Voltage		2.7-3.6	2.0		v	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	v	$V_{O} \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0		V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0	1	0.5	V	I _{OL} = 32 mA
			3.0	1	0.55	V	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μΑ	V _I = 0.8V
				-75		μΑ	V _I = 2.0V
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μΑ	(Note 3)
	Current to Change State			-500		μA	(Note 4)
l _l	Input Current		3.6		10	μΑ	V _I = 5.5V
		Control Pins	3.6		±1.4	μΑ	$V_{I} = 0V \text{ or } V_{CC}$
		Data Pins	3.6	10.1	-5	μΑ	$V_{I} = 0V$
				80 X	1	μΑ	$V_I = V_{CC}$
loff	Power Off Leakage Current		0	2.2	±100	μA	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE		0–1.5V	-	±100	μΑ	$V_0 = 0.5V$ to 3.0V
	Output Current						$V_I = GND \text{ or } V_{CC}$
l _{ozl}	3-STATE Output Leakage Curre	ent	3.6		-5	μΑ	$V_{0} = 0.0V$
I _{OZH}	3-STATE Output Leakage Curre	ent	3.6		5	μΑ	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage Curre	ent	3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current		3.6		0.19	mA	Outputs HIGH
I _{CCL}	Power Supply Current		3.6		5	mA	A or B Port Outputs LOW
l _{ccz}	Power Supply Current		3.6		0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$
							Outputs Disabled
ΔI_{CC}	Increase in Power Supply Curre	ent	3.6		0.2	mA	One Input at V _{CC} – 0.6V
	(Note 5)						Other Inputs at V_{CC} or GND

Note 3: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 4: An external driver must sink at least the specified current to switch from HIGH-to-LOW. Note 5: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

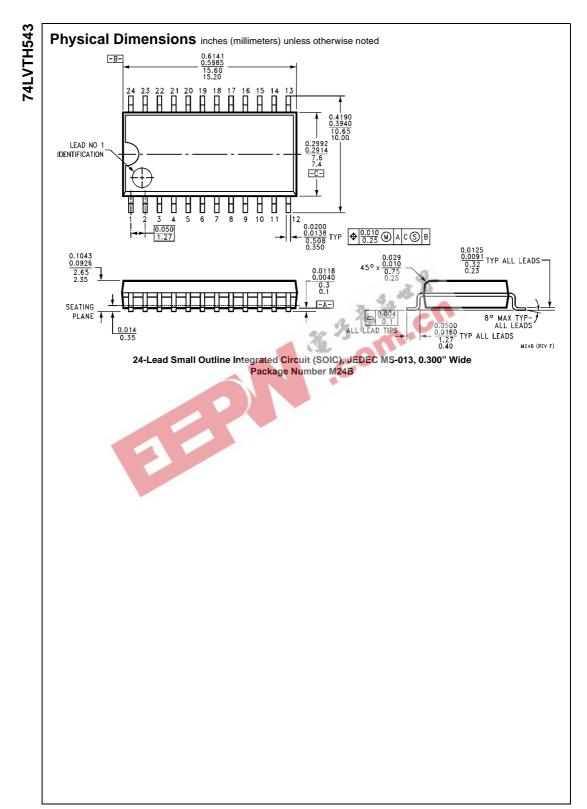
Dynamic Switching Characteristics (Note 6)

Symbol	Parameter	V _{CC}	$T_A = 25^{\circ}C$			Units	Conditions	
Cymbol	i alanotoi	(V)	Min	Тур	Max	onno	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 7)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 7)	

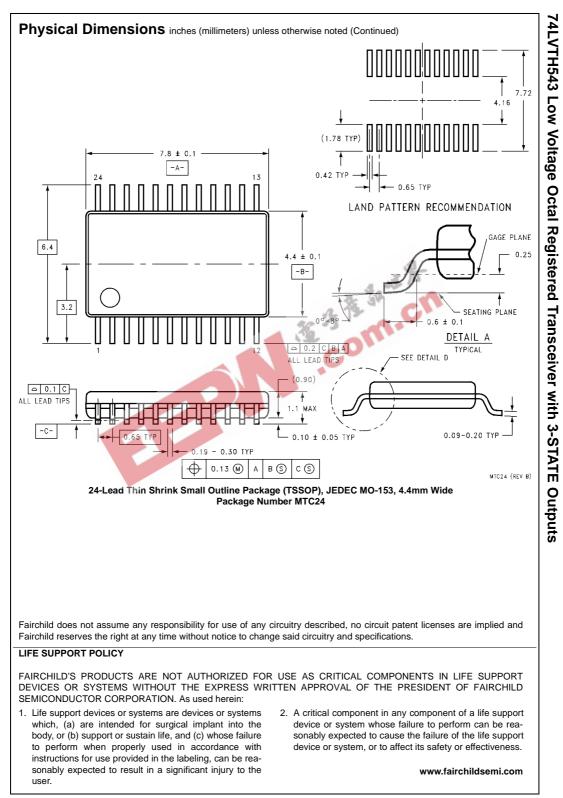
Note 6: Characterized in SOIC package. Guaranteed parameter, but not tested.

Note 7: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

.	Deservation		$\mathbf{C_L} = 50 \ \mathbf{pF}, \ \mathbf{R_L} = 500 \Omega$				
Symbol	Parameter		$3.3V \pm 0.3V$	$V_{CC} = 2.7V$		Units	
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay	1.3	4.4	1.3	4.8		
t _{PHL}	Data to Outputs	1.3	4.6	1.3	5.2	ns	
t _{PLH}	Propagation Delay	1.3	5.4	1.3	6.4		
t _{PHL}	LE to A or B	1.3	5.8	1.3	6.6	ns	
t _{PZH}	Output Enable Time	1.1	5.5	1.1	6.3		
t _{PZL}	OE to A or B	1.1	6.1	1.1	7.2	ns	
t _{PHZ}	Output Disable Time	2.0	5.7	2.0	5.9		
t _{PLZ}	OE to A or B	2.0	5.3	2.0	5.9	ns	
t _{PZH}	Output Enable Time	1.3	5.9	1.3	6.8		
t _{PZL}	CE to A or B	1.3	6.2	1.3	7.4	ns	
t _{PHZ}	Output Disable Time	2.1	5.8	2.1	6.1		
t _{PLZ}	CE to A or B	1.6	5.4	1.6	5.9	ns	
t _W	Pulse Duration	LE LOW 3.3		3.3		ns	
t _S	Setup Time A or B before	LE, Data HIGH 0.4	1.	0.4			
	A or B before	LE, Data LOW 1.0		1.5			
	A or B before	CE, Data HIGH 0.2	- N	0.2		ns	
	A or B before	CE, Data LOW 0.7		1.2			
t _H	Hold Time A or B before	LE, Data HIGH 1.5		0.6			
	A or B before	LE, Data LOW 1.3		1.5			
		E, Data HIGH 1.6		0.5		ns	
		CE, Data LOW 1.4		1.6			
t _{OSHL}	Output to Output Skew (Note 8)		1.0		1.0		
toslh			1.0		1.0	ns	


74LVTH543

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Capacitance (Note 9)

Symbol	Parameter	Conditions	Typical	Units				
C _{IN}	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	4	pF				
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.0V$, $V_O = 0V$ or V_{CC}	8	pF				
Nata 0. Consoitones	Note 9: Consciences is measured at fragmanautin 1 Mills, nor Mill, CTD, 992D, Mathed 2012							

Note 9: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

www.fairchildsemi.com

www.fairchildsemi.com