

SEMICONDUCTOR®

74ACT533

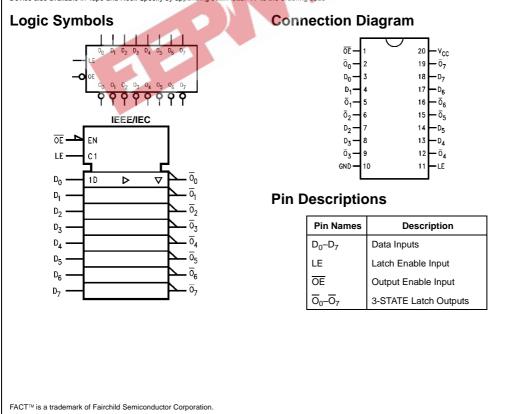
Octal Transparent Latch with 3-STATE Outputs

General Description

The ACT533 consists of eight latches with 3-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is low, the data satisfying the input timing requirements is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the bus output is in the high impedance state.

Features

- \blacksquare I_{CC} and I_{OZ} reduced by 50%
- Eight latches in a single package
- 3-STATE outputs drive bus lines or buffer memory address registers


August 1999

Revised March 2005

- Outputs source/sink 24 mA
- Inverted version of the ACT373
- TTL-compatible inputs

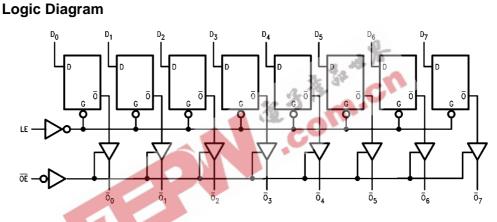
Ordering Code:

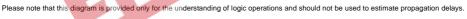
		SC GT
Order Number	Package Number	Package Description
74ACT533SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT533MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT533PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Device also available i	n Tape and Reel. Specify	by appending suffix letter "X" to the ordering code

© 2005 Fairchild Semiconductor Corporation DS500311

Functional Description

The ACT533 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs at setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.


Truth Table


	Inputs		Outputs
LE	OE	D _n	\overline{O}_n
х	н	х	Z
Н	L	L	н
Н	L	н	L
L	L	х	\overline{O}_0

H = HIGH Voltage Leve

L = LOW Voltage Level Z = High Impedance

 $\frac{X}{O_0} = Previous \overline{O}_0 \text{ before HIGH-to-LOW transition of Latch Enable}$

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	- 0.5V to + 7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	– 20 mA
$V_{I} = V_{CC} + 0.5V$	+ 20 mA
DC Input Voltage (VI)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_0 = -0.5V$	– 20 mA
$V_{O} = V_{CC} + 0.5V$	+ 20 mA
DC Output Voltage (V _O)	– 0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	± 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	± 50 mA
Storage Temperature (T _{STG})	– 65°C to + 150°C
DC Latchup Source	
or Sink Current	± 300 mA
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate $\Delta V/\Delta t$	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns

74ACT533

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT^µ circuits outside databook specifications.

DC Electrical Characteristics

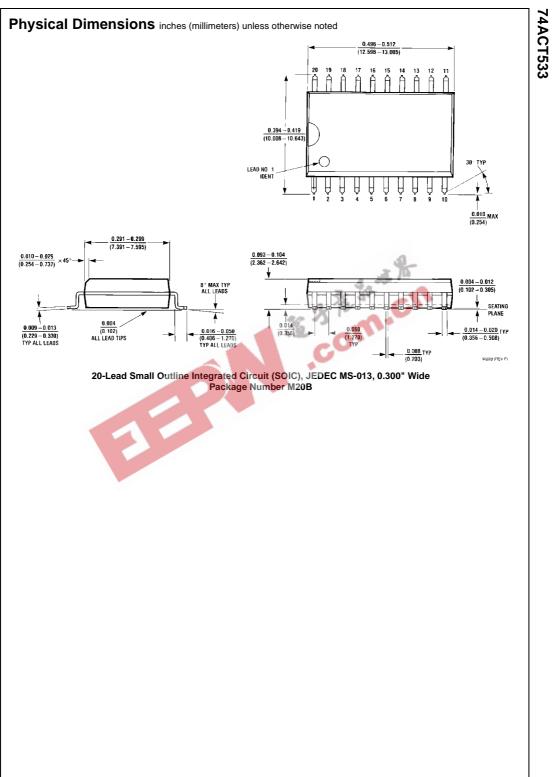
Symbol	Parameter	V _{CC} (V)	T _A =	+25°C	T _A = -40°C to +85°C	Units	Conditions
VIH	Minimum HIGH Level	4.5	1.5	2.0	2.0		V _{OUT} = 0.1V
۹H						V	
	Input Voltage	5.5	1.5	2.0	2.0		or V _{CC} – 0.1V
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8		or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	I _{OH} = -24 mA
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1		I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	V	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	V _I = V _{CC} , GND
	Leakage Current						
I _{OZ}	Maximum 3-STATE			10.05	10.5	•	$V_I = V_{IL}, V_{IH}$
	Leakage Current	5.5		±0.25	±2.5	μA	V _O = V _{CC} , GND
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
	I _{CC} /Input						
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent			4.0	40.0	•	V _{IN} = V _{CC}
	Supply Current	5.5		4.0	40.0	μA	or GND

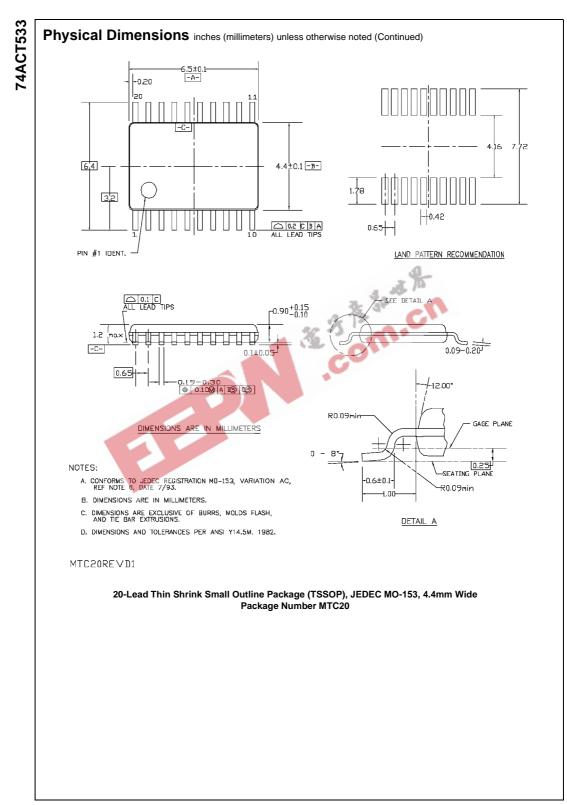
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

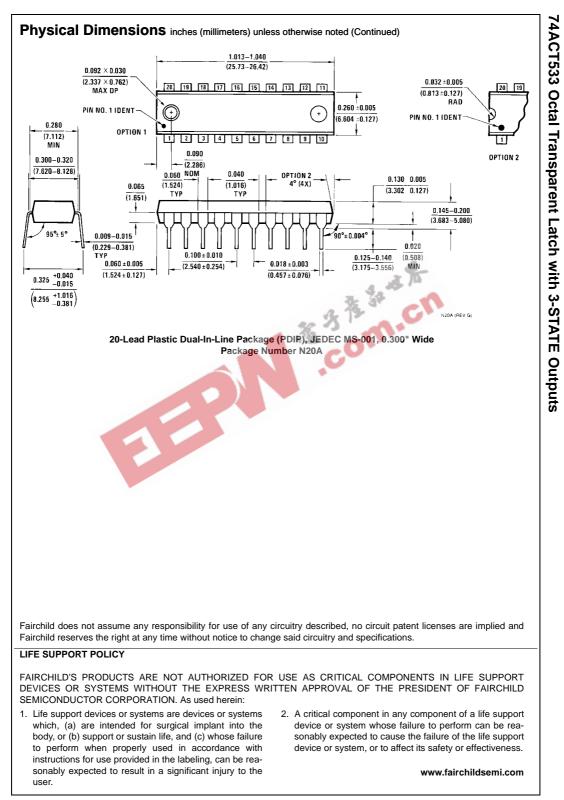
74ACT533

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)		T _A = + 25°C C _L = 50 pF		~	C to + 85°C 50 pF	Units
		(Note 4)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	5.0	2.0	6.0	8.0	2.0	8.5	ns
t _{PLH}	D _n to O _n							
t _{PHL}	Propagation Delay	5.0	2.5	7.0	9.0	2.5	9.5	ns
t _{PLH}	LE to O _n							
t _{PZL} , t _{PZH}	Output Enable Time	5.0	2.0	7.0	9.0	2.0	9.5	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns


Note 4: Voltage Range 5.0 is 5.0V \pm 0.5V.


AC Operating Requirements


		V _{CC}	T _A = +	- 25°C	$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C}\;to+85^{\circ}\textbf{C}$	
Symbol	Parameter	(V)	C _L =	50 pF	$C_L = 50 \ pF$	Units
		(Note 5)	Тур	Guara	nteed Minimum	
t _S	Setup Time, HIGH or LOW	5.0	0	3.0 🚮	3.0	ns
	D _n to LE					
t _H	Hold Time, HIGH or LOW	5.0	0	1.5	1.5	ns
	D _n to LE		. 34	St _		
t _W	LE Pulse Width, HIGH	5.0	2.0	4.0	4.0	ns
Note 5: Volta	ge Range 5.0 is 5.0V \pm 0.5V.					
Capac	itance		00			

Capacitance

Symbol	Parameter	1	Тур	Units	Conditions
CIN	Input Capacitance		4.5	pF	V _{CC} = OPEN
PD	Power Dissipation Capacitance		40	pF	V _{CC} = 5.0V

