

October 1998 Revised April 2000

74VCX16835

Low Voltage 18-Bit Universal Bus Driver with 3.6V Tolerant Inputs and Outputs

General Description

The VCX16835 low voltage 18-bit universal bus driver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

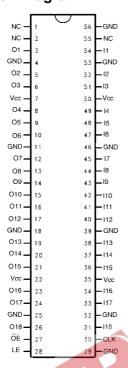
Data flow is controlled by output-enable (\overline{OE}) , latch-enable (LE), and clock (CLK) inputs. The device operates in Transparent Mode when LE is held HIGH. The device operates in clocked mode when LE is LOW and CLK is toggled. Data transfers from the Inputs (In) to Ouputs (On) on a Positive Edge Transition of the Clock. When \overline{OE} is LOW, the output data is enabled. When \overline{OE} is HIGH the output port is in a high impedance state.

The 74VCX16835 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O capability up to 3.6V.

The 74VCX16835 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- Compatible with PC100 DIMM module specifications
- 1.65V–3.6V V_{CC} specifications provided
- 3.6V tolerant inputs and outputs
- t_{PD} (CP to O_n)
 - 4.2ns max for 3.0V to 3.6V $\rm V_{CC}$ 5.2ns max for 2.3V to 2.7V $\rm V_{CC}$ 9.2ns max for 1.65V to 1.95V $\rm V_{CC}$
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Static Drive (I_{OH}/I_{OL})
 - ±24mA @ 3.0V
 - ±18mA @ 2.3V
 - ±6mA @ 1.65V
- Latchup performance exceeds 300 mA
- ESD performance:
 - Human body model > 2000V
 - Machine model >200V


Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} ($\overline{\text{OE}}$ to GND) through a pulldown resistor; the minimum value of the resistor is determined by the current sourcing capability of the driver.

Ordering Code:

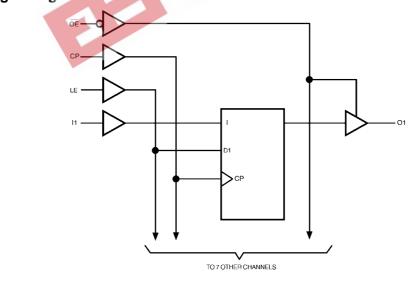
Order Number	Package Number	Package Description
74VCX16835MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
OE	Output Enable Input (Active LOW)
LE	Latch Enable Input
CP	Clock Input
I ₁ - I ₁₈	Data Inputs
I ₁ - I ₁₈ O ₁ - O ₁₈	3-STATE Outputs


Function Table

	Inp	Outputs		
OE	LE	СР	In	O _n
Н	Х	Х	Х	Z
L	Н	Χ	L	L
L	Н	Χ	Н	Н
L	L	\uparrow	L	L
L	L	1	Н	Н
L	_ <u></u>	基 船	X	O ₀ (Note 2)
L ;	a Ly	L	X	O ₀ (Note 3)

L
H = HIGH Voltage Level
L = LOW Level Voltage
X = Immaterial (HIGH or LOW, Inputs may not float)
Z = High Impedance

Note 2: Output level before the indicated steady-state input conditions were established provided that CP was HIGH before LE went LOW. Note 3: Output level before the indicated steady-state input conditions were established.

Logic Diagram

Absolute Maximum Ratings(Note 4)

Supply Voltage (V_{CC}) -0.5V to +4.6V DC Input Voltage (V_I) -0.5V to +4.6V

Output Voltage (V_O)

Outputs 3-STATE -0.5V to +4.6V Outputs Active (Note 5) -0.5 to $V_{CC} + 0.5V$ DC Input Diode Current $(I_{IK}) V_I < 0V$ -50 mA

DC Output Diode Current (I_{OK})

 $V_{O} < 0V$ -50 mA $V_O > V_{CC}$ +50 mA

DC Output Source/Sink Current

±50 mA (I_{OH}/I_{OL})

DC V_{CC} or Ground Current per

Supply Pin (I_{CC} or Ground) ±100 mA -65°C to +150°C

Storage Temperature Range (T_{STG})

Recommended Operating Conditions (Note 6)

Power Supply

Operating 1.65V to 3.6V Data Retention Only 1.2V to 3.6V Input Voltage -0.3V to 3.6V

Output Voltage (V_O)

Output in Active States 0V to V_{CC} 0.0V to 3.6V Output in 3-STATE

Output Current in I_{OH}/I_{OL}

 $V_{CC} = 3.0V$ to 3.6V+24 mA $V_{CC} = 2.3V \text{ to } 2.7V$ ±18 mA

 $V_{CC} = 1.65V \text{ to } 2.3V$ ±6 mA Free Air Operating Temperature (T_A) -40°C to +85°C

Minimum Input Edge Rate (Δt/ΔV)

 V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V 10 ns/V

Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.

DC Electrical Characteristics $(2.7V < V_{cc} \le 3.6V)$

Symbol	Parameter	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.7–3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.7-3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	T _{OH} = -100 μA	2.7–3.6	V _{CC} - 0.2		
		I _{OH} = -12 mA	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		V
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu\text{A}$	2.7-3.6		0.2	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 18 mA	3.0		0.4	V
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0V \le V_I \le 3.6V$	2.7-3.6		±5.0	μА
l _{OZ}	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.7-3.6		±10	
		$V_I = V_{IH}$ or V_{IL}	2.7-3.6		±10	μА
I _{OFF}	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7-3.6		20	
		$V_{CC} \le (V_I, V_O) \le 3.6V \text{ (Note 7)}$	2.7-3.6		±20	μА
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		750	μА

Note 7: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (2.3V ≤ V_{CC} ≤ 2.7V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 - 2.7	1.6		V
V _{IL}	LOW Level Input Voltage		2.3 - 2.7		0.7	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.3 -2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		V
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		V
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu\text{A}$	2.3 - 2.7		0.2	
		$I_{OL} = 12mA$	2.3		0.4	V
		$I_{OL} = 18 \text{ mA}$	2.3		0.6	
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	2.3 - 2.7		±5.0	μА
loz	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	2.3 - 2.7		±10	μΑ
		$V_I = V_{IH}$ or V_{IL}				
l _{OFF}	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μА
Icc	Quiescent Supply Current	V _I = V _{CC} or GND	2.3 - 2.7		20	A
		$V_{CC} \le (V_I, V_O) \le 3.6V \text{ (Note 8)}$	2.3 - 2.7		±20	μΑ

Note 8: Outputs disabled or 3-STATE only. DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _C C (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 2.3	$0.65 \times V_{CC}$		V
V _{IL}	LOW Level Input Voltage		1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu\text{A}$	1.65 - 2.3	V _{CC} - 0.2		V
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		V
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu\text{A}$	1.65 - 2.3		0.2	V
		$I_{OL} = 6mA$	1.65		0.3	V
I _I	Input Leakage Current	0 ≤ V _I ≤ 3.6V	1.65 - 2.3		±5.0	μΑ
l _{OZ}	3-STATE Output Leakage	0 ≤ V _O ≤ 3.6V	1.65 - 2.3		±10	μА
		$V_I = V_{IH}$ or V_{IL}				μΛ
I _{OFF}	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65 - 2.3		20	μА
		$V_{CC} \le (V_I, V_O) \le 3.6V \text{ (Note 9)}$	1.65 - 2.3		±20	μΑ

Note 9: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 10)

			$T_A = -40$ °C to +85°C, $C_L = 30$ pF, $R_L = 500\Omega$					
Symbol	Parameter	V _{CC} = 3	.3V ± 0.3V	V _{CC} = 2	2.5 ± 0.2V	V _{CC} = 1.	8 ± 0.15V	Units
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		100		MHz
t _{PHL} ,	Propagation Delay	0.6	3.3	0.8	4.2	1.5	8.4	ns
t _{PLH}	Bus to Bus	0.6	3.3	0.6	4.2	1.5	0.4	115
t _{PHL} ,	Propagation Delay	1.4	4.2	1.5	5.2	2.0	9.2	ns
t _{PLH}	Clock to Bus	1.4	1.4 4.2	1.5	5.2	2.0	3.2	115
t _{PHL} ,	Propagation Delay	0.6	3.8	0.8	4.9	1.5	9.8	ns
t _{PLH}	LE to Bus	0.0	3.0	0.0	4.5	1.5	5.0	115
t _{PZL} , t _{PZH}	Output Enable Time	0.6	3.8	0.8	4.9	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.6	3.9	0.8	4.5	1.5	7.6	ns
t _S	Setup Time	1.5		1.5		2.5		ns
t _H	Hold Time	0.7		0.7		1.0		ns
t _W	Pulse Width	1.5		1.5		4.0		ns
toshl	Output to Output Skew		0.5		0.5		0.75	ns
toslh	(Note 11)		0.5		0.5	- B	0.73	115

Note 10: For CL=50PF, add approximately 300ps to the AC maximum specification.

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

AC Electrical Characteristics Over Load (Note 12)

		$T_A = -0^{\circ}C$	to +85°C, R _L =	$500\Omega V_{CC} = 3.$		
Symbol	Parameter	C _L =	0 pF	C _L =	50 pF	Units
		Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Prop Delay Bus to Bus	0.7	2.1	1.0	3.6	ns
t _{PHL} , t _{PLH}	Prop Delay Clock to Bus	1.5	3.0	1.7	4.5	ns
t _{PHL} , t _{PLH}	Prop Delay LE to Bus	0.7	2.6	1.0	4.1	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.7	2.6	1.0	4.1	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.7	2.7	1.0	4.2	ns
t _{PHL} , t _{PLH}	SSO Prop Delay Clock to Bus (Note 13)	1.5	3.3			ns
t _S	Setup Time	1.5		1.5		ns
t _H	Hold Time	0.7		0.7		ns

Note 12: This parameter is guaranteed by characterization but not tested.

Note 13: SSO = Simultaneous Switching Output. Any output combination of LOW-to-HIGH and/or HIGH-to-LOW transition.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	T _A =+25°C	Units
Symbol	ralameter	Conditions	(V)	Typical	Offics
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.35	
			2.5	0.7	V
			3.3	0.9	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF, } V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.35	
			2.5	-0.7	V
			3.3	-0.9	
V _{OHV}	Quiet Output Dynamic Valley VOH	$C_L = 30 \text{ pF, } V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.3	
			2.5	1.7	V
			3.3	2.0	

5

Capacitance

Symbol	pol Parameter Conditions		$T_A = +25^{\circ}C$	Units
Cymbol	i didiletei	Conditions	Typical	Onits
C _{IN}	Input Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V, \text{ or } 3.3V,$	3.5	pF
C _{I/O}	Input/Output Capacitance	V _I = 0V, or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	5.5	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	13	pF

I_{OUT} - V_{OUT} Characteristics

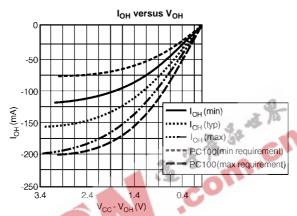


FIGURE 1. Characteristics for Output - Pull Up Driver

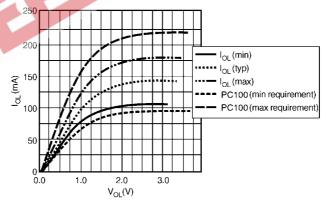


FIGURE 2. Characteristics for Output - Pull Down Driver

AC Loading and Waveforms

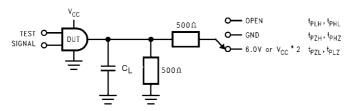


FIGURE 3. AC Test Circuit

TEST	SWITCH		
t _{PLH} , t _{PHL}	Open		
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$; $V_{CC} \times 2$ at $V_{CC} = 2.5 \pm 0.2V$; 1.8V to $\pm 0.15V$		
t _{PZH} , t _{PHZ}	GND		

FIGURE 4. Waveform for Inverting and Non-inverting Functions $t_r = t_f \leq 2.0 ns, \, 10\% \ to \ 90\%$

FIGURE 5. 3-STATE Output High Enable and Disable Times for Low Voltage Logic $t_r = t_f \leq 2.0ns, \, 10\% \ to \ 90\%$

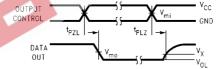
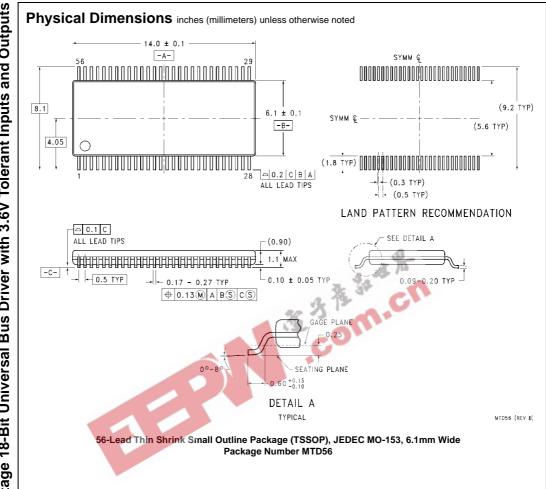



FIGURE 6. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic $t_r=t_f\!\le\!2.0ns,\,10\%$ to 90%

Symbol	V _{CC}				
Cymbol	3.3V ± 0.3V	2.5V ± 0.2V	1.8 ± 0.15V		
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2		
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2		
V _x	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V		
V _y	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V		

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com