SN54AHC16374...WD PACKAGE

SN74AHC16374...DGG, DGV, OR DL PACKAGE

(TOP VIEW)

10E

1Q1 **1**2

1Q2 📙 3

GND 4

1Q3 🛮 5

1Q4 🛮 6

V_{CC} 47

1Q5 **[**] 8

1Q6 **4**9

GND 10

1Q7 **1**11

1Q8 **4** 12

2Q1 13

2Q2 🛮 14

GND 15

2Q3 16

2Q4 [17

2Q5 **4** 19

2Q6 🛮 20

2Q8 [] 23

21

22

GND [

2Q7 [

20E 24

SCLS330G - MARCH 1996 - REVISED JANUARY 2000

48 1 1CLK

47 1D1 46 1D2

45 GND

44 🛮 1D3

43 1D4

42 V_{CC}

41 1 1D5

40 1D6

39 L GND

38 D7

37 D8

36 2D1

35 2D2

34 D GND

33 D2D3

32 2D4

31 V_{CC}

30 2D5

29 2D6

28 GND

27 2D7

26 D2D8

25 2CLK

- Members of the Texas Instruments
 Widebus™ Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Process
- Operating Range 2-V to 5.5-V V_{CC}
- 3-State Outputs Drive Bus Lines Directly
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'AHC16374 devices are 16-bit edge-triggered D-type flip-flops with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54AHC16374 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74AHC16374 is characterized for operation from –40°C to 85°C.

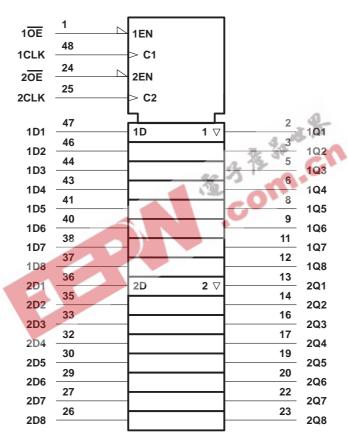
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

°C to 85°C.

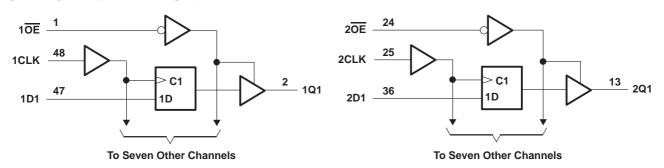
TEXAS INSTRUMENTS

Copyright © 2000, Texas Instruments Incorporated


UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCLS330G - MARCH 1996 - REVISED JANUARY 2000

FUNCTION TABLE (each 8-bit flip-flop)


	INPUTS		OUTPUT
OE	CLK	D	Q
L	1	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q ₀
Н	Χ	Χ	Z

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCLS330G - MARCH 1996 - REVISED JANUARY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Output voltage range, VO (see Note 1)	
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±20 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$.	±25 mA
Continuous current through each V _{CC} or GND	±75 mA
Package thermal impedance, θ _{JA} (see Note 2): [DGG package 70°C/W
	DGV package 58°C/W
Γ	DL package
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 3)

	1 3º	SN54AH	C16374	SN74AHC	16374	UNIT
	20 3 1	MIN	MAX	MIN	MAX	UNIT
Supply voltage	132	2	5.5	2	5.5	V
	V _{CC} = 2 V	1.5		1.5		
High-level input voltage	$V_{CC} = 3 V$	2.1		2.1		V
	V _{CC} = 5.5 V	3.85		3.85		
	V _{CC} = 2 V		0.5		0.5	
Low-level input voltage	VCC = 3 V		0.9		0.9	V
	V _{CC} = 5.5 V		1.65		1.65	
Input voltage		00	5.5	0	5.5	V
Output voltage		.0	Vcc	0	Vcc	V
	V _{CC} = 2 V	20	-50		-50	μΑ
High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	780	-4		-4	mA
	$V_{CC} = 5 V \pm 0.5 V$	~	-8		-8	IIIA
	V _{CC} = 2 V		50		50	μΑ
Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	mA
	$V_{CC} = 5 V \pm 0.5 V$		8		8	IIIA
Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100		100	ns/V
input transition rise or rail fate	$V_{CC} = 5 V \pm 0.5 V$		20		20	115/V
Operating free-air temperature		-55	125	-40	85	°C
	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Input transition rise or fall rate	Supply voltage $ \begin{array}{c} V_{CC} = 2 \text{ V} \\ V_{CC} = 3 \text{ V} \\ V_{CC} = 3.5 \text{ V} \\ V_{CC} = 5.5 \text{ V} \\ V_{CC} = 2 \text{ V} \\ V_{CC} = 2 \text{ V} \\ V_{CC} = 2 \text{ V} \\ V_{CC} = 3 \text{ V} \\ V_{CC} = 5.5 \text{ V} \\ \end{array} $ Input voltage $ \begin{array}{c} V_{CC} = 2 \text{ V} \\ V_{CC} = 3.3 \text{ V} \\ V_{CC} = 5.5 \text{ V} \\ \end{array} $ Input voltage $ \begin{array}{c} V_{CC} = 2 \text{ V} \\ V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 2 \text{ V} \\ V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 2 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $ $ \begin{array}{c} V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \\ \end{array} $	Supply voltage 2 High-level input voltage $V_{CC} = 2 V$ 1.5 Voc = 3 V 2.1 Voc = 5.5 V 3.85 Voc = 2 V Voc = 3 V Voc = 5.5 V Input voltage $V_{CC} = 5.5 V$ Input voltage $V_{CC} = 5.5 V$ High-level output current $V_{CC} = 5.5 V$ Low-level output current $V_{CC} = 3.3 V \pm 0.3 V$ Voc = 5 V \pm 0.5 V Input voltage $V_{CC} = 5.5 V$ Input voltage $V_{CC} = 2 V$ Voc = 3.3 V \pm 0.3 V Voc = 5 V \pm 0.5 V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCLS330G - MARCH 1996 - REVISED JANUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vaa	T,	_Δ = 25°C	;	SN54AHC	16374	SN74AHC16374		UNIT
PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		
Voн		4.5 V	4.4	4.5		4.4		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8	N.	3.8		
					0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1	40	0.1		0.1	
VOL		4.5 V			0.1	6	0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36	20	0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36	80	0.5		0.44	
lį	$V_I = V_{CC}$ or GND	0 V to 5.5 V			±0.1	V	±1*		±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.25	- 0	±2.5		±2.5	μΑ
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4	3 /5	40		40	μΑ
C _i	V _I = V _{CC} or GND	5 V		2.5	10	3.	A .		10	pF
Co	$V_O = V_{CC}$ or GND	5 V		3.5	19	C				pF

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested at V_{CC} = 0 V.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C	SN54AHC16374	SN74AHC16374	UNIT
		MIN MAX	MIN MAX	MIN MAX	ONIT
t _W	Pulse duration, CLK high or low	5	5.50	5.5	ns
t _{su}	Setup time, data before CLK↑	4.5	4	4	ns
th	Hold time, data after CLK↑	2	2	2	ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		$T_A = 2$	25°C	SN54AH0	C16374	SN74AHC	16374	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	ONIT
t _W	Pulse duration, CLK high or low	5		5	M	5		ns
t _{su}	Setup time, data before CLK↑	3		3		3		ns
th	Hold time, data after CLK↑	2		2		2		ns

SCLS330G - MARCH 1996 - REVISED JANUARY 2000

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	LOAD	T,	_Δ = 25°C	;	SN54AH0	C16374	SN74AHC	16374	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
.			C _L = 15 pF	80*	130*		70*		70		MHz
fmax			C _L = 50 pF	55	85		50		50		IVIITZ
tPLH	CLK	Q	C _L = 15 pF		9*	15*	1*	17*	1	17	ns
tPHL	CLK	α	CL = 15 pr		9*	15*	1*	17*	1	17	115
^t PZH	ŌĒ	Q	C _I = 15 pF		8*	13*	1*	15*	1	15	ns
tPZL	OE	Q	C[= 15 μ/		8*	13*	1*	15*	1	15	115
t _{PHZ}		Q	C _L = 15 pF		9*	14*	1* 6	16*	1	16	ns
tPLZ	ŌĒ	Q	CL = 13 μι		10*	14*	15	16*	1	16	115
t _{PLH}	CLK	Q	C _L = 50 pF		10.6	16.2	31	18.5	1	18.5	ns
tPHL	CLK	α	CL = 50 pr		10.6	16.2	20 1	18.5	1	18.5	115
t _{PZH}	ŌĒ	Q	C ₁ = 50 pF		9.6	14.9	1	16	1	16	ns
t _{PZL}	OE	Q	CL = 30 pr		9.6	14.9	1	16	1	16	115
t _{PHZ}	ŌĒ	0	C _I = 50 pF		10.2	15.5	1	17	1	17	ns
t _{PLZ}	OE	Q	OL = 30 br		11.8	15.5	1	17	1	17	115
tsk(o)			C _L = 50 pF		2 13	1.5**	S_{II} ,			1.5	ns

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	ТО	LOAD	T,	Δ = 25°C	;	SN54AH	C16374	SN74AHC	16374	UNIT			
PARAWETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT			
4			C _L = 15 pF	130*	185*		110*		110		MHz			
fmax			C _L = 50 pF	85	120		75		75		IVIIIZ			
t _{PLH}	CLK	Q	C _I = 15 pF		5.4*	9.1*	1*	10.1*	1	10.1	ns			
t _{PHL}	CLK	Q	CL = 15 pr		5.4*	9.1*	1*	10.1*	1	10.1	115			
^t PZH	ŌĒ	Q	C _I = 15 pF		5.1*	9.1*	1*	10.1*	1	10.1	ns			
t _{PZL}	UE	γ	C[= 15 μ·		5.1*	9.1*	1*	10.1*	1	10.1	115			
^t PHZ	ŌĒ	Q	C _I = 15 pF		5*	9.5*	1* 6	10.5*	1	10.5	ns			
tPLZ	OE	l Q	ď	3	<u> </u>	CL = 15 pr		5*	9.5*	15	10.5*	1	10.5	115
t _{PLH}	CLK	Q	C: - 50 pF		6.9	10.1	701	11.5	1	11.5	ns			
t _{PHL}	CLK	α	C _L = 50 pF		6.9	10.1	06 1	11.5	1	11.5	115			
^t PZH	ŌĒ	Q	C _I = 50 pF		6.6	10.1	1	11.5	1	11.5	ns			
tPZL	OE	α	CL = 50 pr		6.6	10.1	1	11.5	1	11.5	115			
t _{PHZ}		Q	C _L = 50 pF		6.1	10.5	1	11.5	1	11.5	ns			
t _{PLZ}	ŌĒ	ζ	OL = 30 bit		6.1	10.5	1	11.5	1	11.5	115			
t _{sk(o)}			C _L = 50 pF			1**				1	ns			

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

^{**} On products compliant to MIL-PRF-38535, this parameter does not apply.

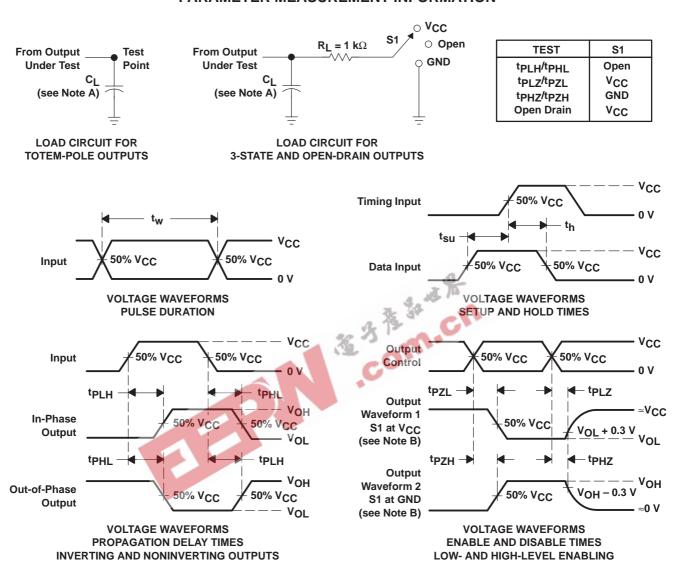
^{**} On products compliant to MIL-PRF-38535, this parameter does not apply.

SN54AHC16374, SN74AHC16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS330G - MARCH 1996 - REVISED JANUARY 2000

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)

	PARAMETER	SN74	UNIT		
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic VOL		0.36	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.16	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		4.6		V
V _{IH(D)}	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

NOTE 4: Characteristics are for surface-mount packages only.


operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance	No load, f = 1 MHz	32	pF

SCLS330G - MARCH 1996 - REVISED JANUARY 2000

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 3 \ ns$, $t_f \leq 3 \ ns$.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

27-Sep-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74AHC16374DGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AHC16374DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AHC16374DGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AHC16374DGVRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16374DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16374DGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16374DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16374DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16374DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16374DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

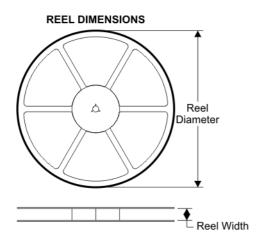
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

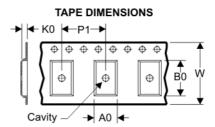
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

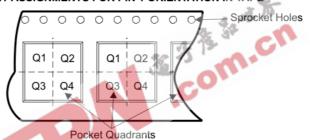
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



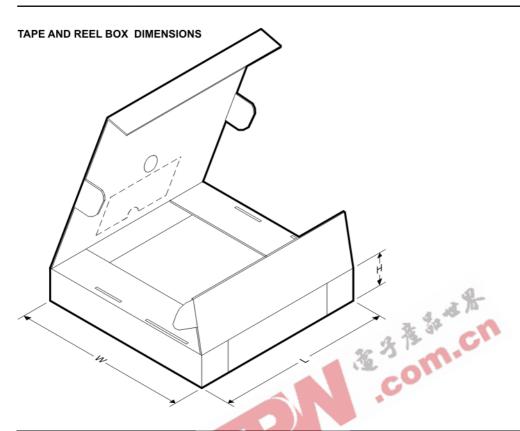
PACKAGE MATERIALS INFORMATION

4-Oct-2007


TAPE AND REEL BOX INFORMATION

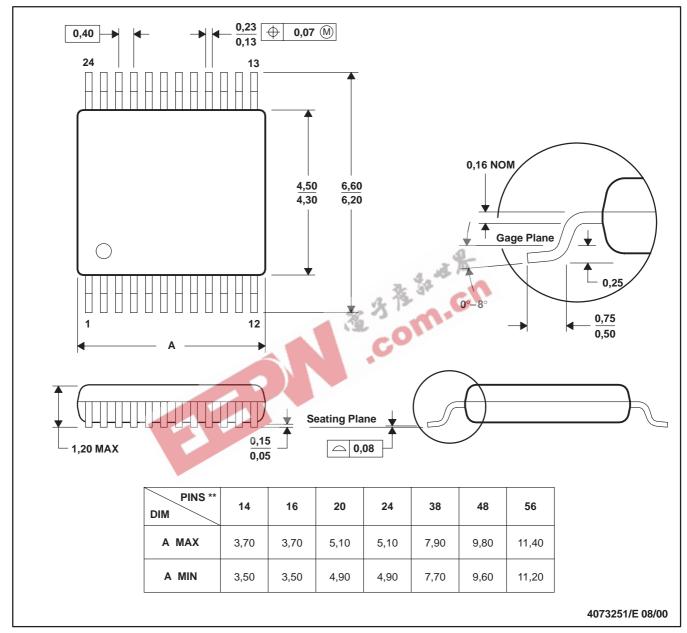
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPES



Device	Package	Pins		Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC16374DGGR	DGG	48	SITE 41	330	24	8.6	15.8	1.8	12	24	Q1
SN74AHC16374DGVR	DGV	48	SITE 41	330	24	6.8	10.1	1.6	12	24	Q1
SN74AHC16374DLR	DL	48	SITE 41	330	32	11.35	16.2	3.1	16	32	Q1

4-Oct-2007



Device Package		Pins	Site	Length (mm)	Width (mm)	Height (mm)	
SN74AHC16374DGGR	DGG	48	SITE 41	346.0	346.0	41.0	
SN74AHC16374DGVR	DGV	48	SITE 41	346.0	346.0	41.0	
SN74AHC16374DLR	DL	48	SITE 41	346.0	346.0	49.0	

DGV (R-PDSO-G**)

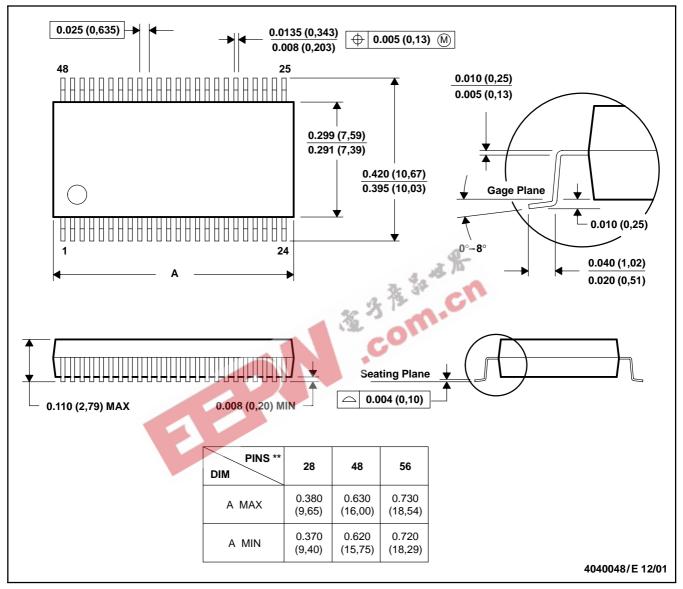
24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

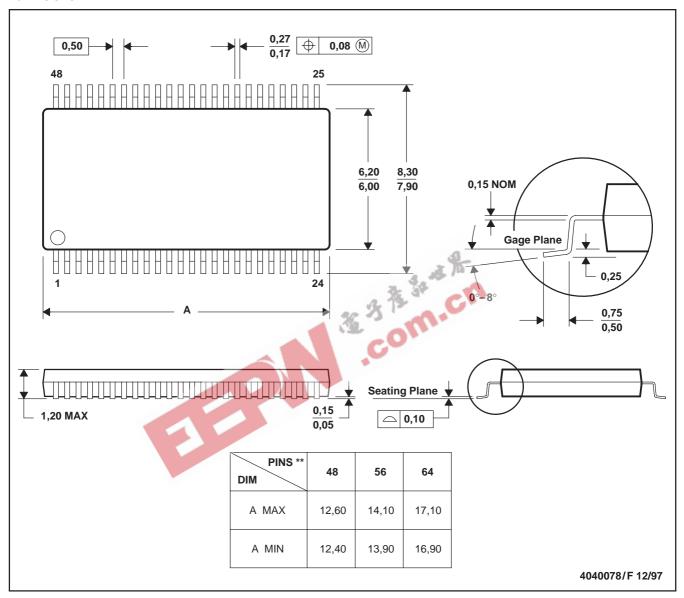
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.


D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DL (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti-rfid.com	Telephony	www.ti.com/telephony
www.ti.com/lpw	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lpw Automotive Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging