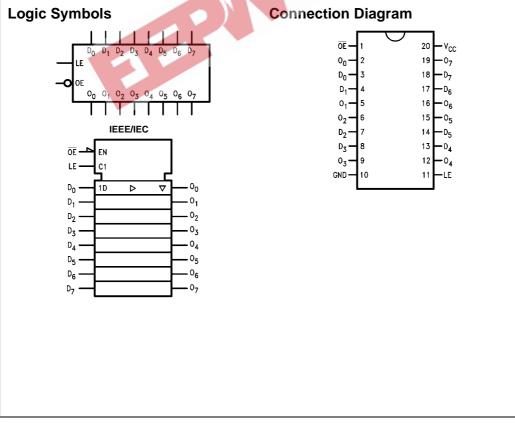


SEMICONDUCTOR

74F373 Octal Transparent Latch with 3-STATE Outputs

General Description

The 74F373 consists of eight latches with 3-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state.


Features

- Eight latches in a single package
- 3-STATE outputs for bus interfacing
- Guaranteed 4000V minimum ESD protection

e.

Ordering Code:

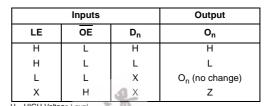
•		A 30- 1-
Order Number	Package Number	Package Description
74F373SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F373MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F373PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tane and Reel Specify	by appending the suffix letter "X" to the ordering code

© 1999 Fairchild Semiconductor Corporation DS009523

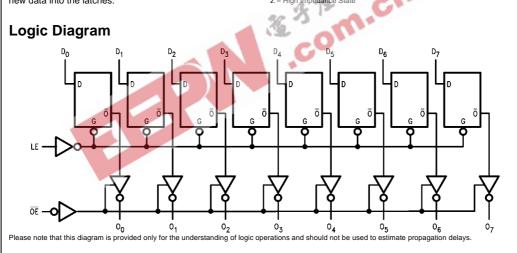
www.fairchildsemi.com

May 1988 Revised August 1999

74F373


Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}
	Description	HIGH/LOW	Output I _{OH} /I _{OL}
D ₀ –D ₇	Data Inputs	1.0/1.0	20 µA/–0.6 mA
LE	Latch Enable Input (Active HIGH)	1.0/1.0	20 µA/–0.6 mA
OE	Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA
O ₀ –O ₇	3-STATE Latch Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)


Functional Description

Truth Table

The 74F373 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance State

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

74F373

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

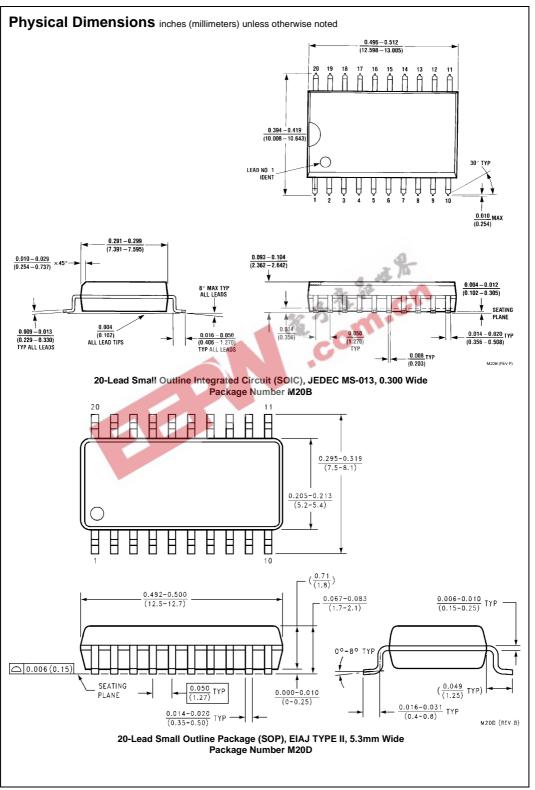
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

.....

DC Electrical Characteristics

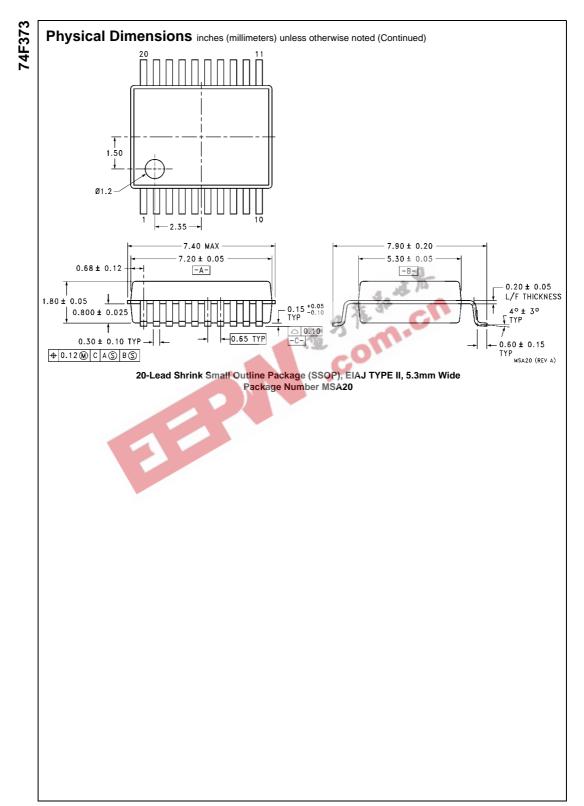
Symbol	Parameter		Min	Тур	Max	Units	Vcc	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V	6	Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	i _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5		2.1			$I_{OH} = -1 \text{ mA}$
	Voltage	10% V _{CC}	2.4			O	Min	$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7			V	IVIIN	$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
	Voltage							
I _{IH}	Input HIGH				5.0	μA	Max	V _{IN} = 2.7V
	Current				5.0	μΛ	IVIAX	VIN - 2.7 V
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΛ	IVIAX	VIN - 7.0V
I _{CEX}	Output HIGH				50	μA	Max	$V_{OUT} = V_{CC}$
	Leakage Current				50	μΛ	IVIAX	VOUT - VCC
V _{ID} In	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV
	Circuit Current				5.75	μΑ	0.0	All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$
l _{os}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$
I _{CCZ}	Power Supply Current			38	55	mA	Max	$V_{O} = HIGH Z$

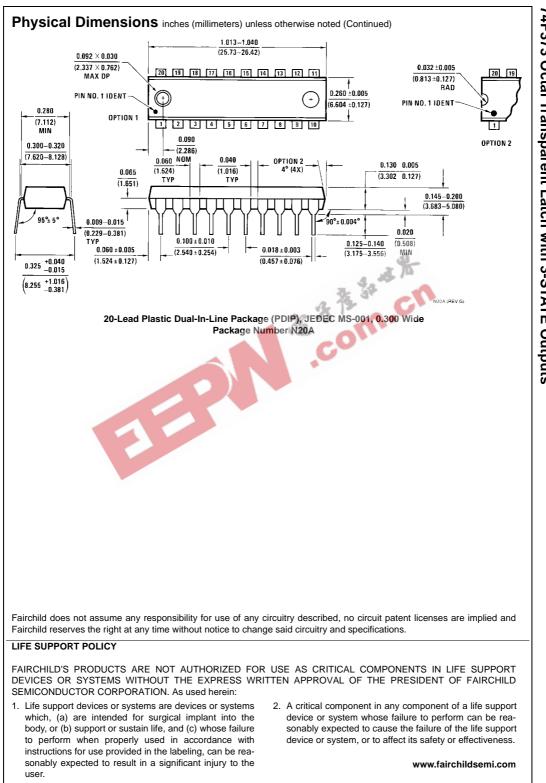
CD
~
3
ш
4
~


AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	3.0	5.3	7.0	3.0	8.5	3.0	8.0	ns
t _{PHL}	D _n to O _n	2.0	3.7	5.0	2.0	7.0	2.0	6.0	
t _{PLH}	Propagation Delay	5.0	9.0	11.5	5.0	15.0	5.0	13.0	
t _{PHL}	LE to O _n	3.0	5.2	7.0	3.0	8.5	3.0	8.0	ns
t _{PZH}	Output Enable Time	2.0	5.0	11.0	2.0	13.5	2.0	12.0	ns
t _{PZL}		2.0	5.6	7.5	2.0	10.0	2.0	8.5	
t _{PHZ}	Output Disable Time	1.5	4.5	6.5	1.5	10.0	1.5	7.5	
t _{PLZ}		1.5	3.8	5.0	1.5	7.0	1.5	6.0	ns

AC Operating Requirements


Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$	T _A = 0°C to +70°C V _{CC} = +5.0V		Units
		Min	Max	Min Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0	2.0		
t _S (L)	D _n to LE	2.0		2.0	2.0		ns
t _H (H)	Hold Time, HIGH or LOW	3.0	An X	3.0	3.0		115
t _H (L)	D _n to LE	3.0	35	4.0	3.0		
t _W (H)	LE Pulse Width, HIGH	6.0	1 100	6.0	6.0		ns


www.fairchildsemi.com

74F373

www.fairchildsemi.com

www.fairchildsemi.com