

Pin Descriptions

Pin Names	Description
OEn	Output Enable Input (Active LOW)
LEn	Latch Enable Input
I ₀ —I ₁₅	Inputs
O ₀ -O ₁₅	Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	LE ₁	NC	I ₀
В	0 ₂	0 ₁	NC	NC	I ₁	l ₂
С	0 ₄	O ₃	V _{CC}	V _{CC}	I ₃	I ₄
D	0 ₆	O ₅	GND	GND	I ₅	I ₆
E	0 ₈	07	GND	GND	۱ ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	Vcc	V _{CC}	I ₁₁	I ₁₂
H	O ₁₄	0 ₁₃	NC	NC	I ₁₃	I ₁₄
L L	0 ₁₅	NC	OE ₂	LE ₂	NC	I ₁₅

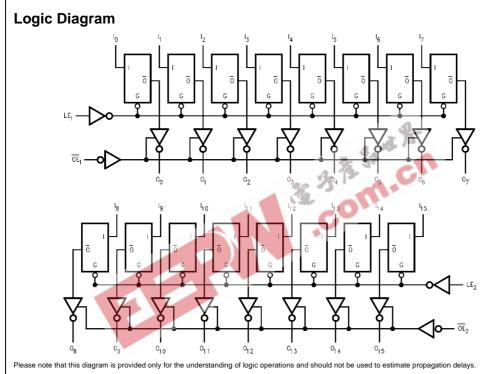
Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ —I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
Н	L	Н	н
1	1	х	O ₀
	-	Х	0
	Inputs		Outputs
LE ₂		I ₈ –I ₁₅	
LE ₂	-		Outputs
	0E ₂	I ₈ –I ₁₅	Outputs O ₈ -O ₁₅
Х	0E ₂	I ₈ –I ₁₅ X	Outputs O ₈ -O ₁₅ Z

 H
 = HIGH Voltage Level

 L
 = LOW Voltage Level

 X
 = Immaterial (HIGH or LOW, inputs may not float)


 Z
 = High Impedance

 O₀ = Previous O₀ before HIGH-to-LOW of Latch Enable

Functional Description

The 74ALVC16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the I_n enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_n. The 3-STATE outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Absolute Maximum Ratings(Note 4)

		Condi
Supply Voltage (V _{CC})	-0.5V to +4.6V	Condi
DC Input Voltage (VI)	-0.5V to 4.6V	Power Su
Output Voltage (V _O) (Note 5)	–0.5V to V _{CC} +0.5V	Operat
DC Input Diode Current (IIK)		Input Volt
$V_1 < 0V$	–50 mA	Output Vo
DC Output Diode Current (I _{OK})		Free Air (
$V_{O} < 0V$	–50 mA	Minimum
DC Output Source/Sink Current		V _{IN} = 0

(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C

Recommended Operating itions (Note 6)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (VI)	0V to V_{CC}
Output Voltage (V _O)	0V to V _{CC}
Free Air Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
Note 4: The Absolute Maximum Ratings are thos	e values beyond which

 A Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Floating or unused inputs must be held HIGH or LOW.

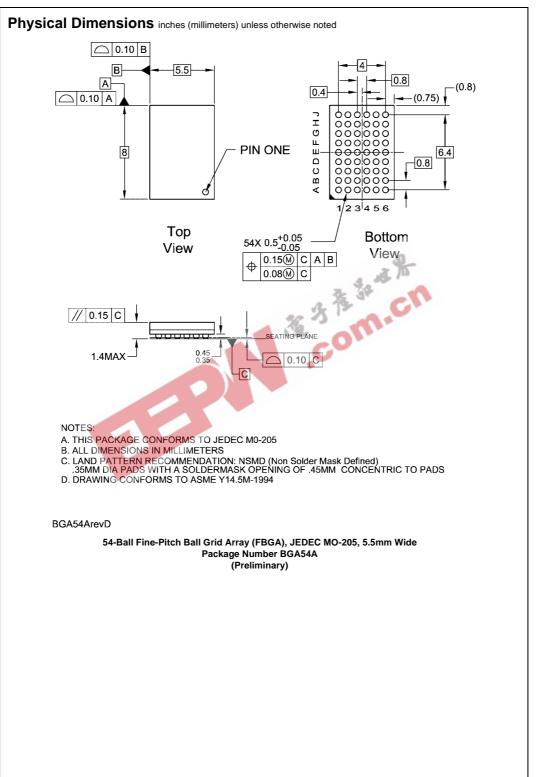
DC Electrical Characteristics

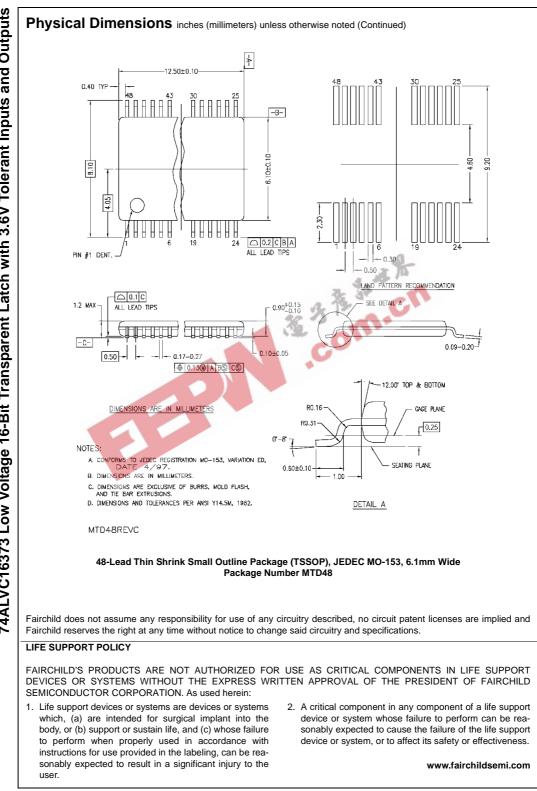
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage	3637	1.65 -1.95 2.3 - 2.7 2.7 - 3.6	0.65 x V _{CC} 1.7 2.0		V
VIL	LOW Level Input Voltage		1.65 -1.95 2.3 - 2.7 2.7 - 3.6		0.35 x V _{CC} 0.7 0.8	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA I _{OH} = -4 mA	1.65 - 3.6 1.65	V _{CC} - 0.2 1.2		
		I _{OH} =6 mA	2.3	2		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
/ _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	v
		I _{OL} = 12mA	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3		0.55	
I	Input Leakage Current	$0 \leq V_l \leq 3.6V$	3.6		±5.0	μA
oz	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
∆l _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μA


AC Electrical Characteristics

				Τ _Α =	-40°C to +	85°C, R _L = 5	500 Ω			
Symbol Parameter	Parameter	C _L = 50 pF				C _L = 30 pF			Units	
Gymbol	raiameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC}	2.7V	V _{CC} = 2.	$5V \pm 0.2V$	V _{CC} = 1.8	$V \pm 0.15V$	onita
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus	1.3	3.5	1.5	3.9	1.0	3.4	1.5	6.8	ns
t _{PHL} , t _{PLH}	Propagation Delay LE to Bus	1.3	3.5	1.5	4.4	1.0	3.9	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.0	1.5	5.1	1.0	4.6	1.5	9.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.0	1.5	4.3	1.0	3.8	1.5	6.8	ns

Capacitance


Symbol	Parameter		Conditions	$T_A = +25^{\circ}C$		Units
Symbol	Parameter		Conditions	v _{cc}	Typical	Units
C _{IN}	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 50 pF	3.3 2.5	20 20	pF
			2 3 tom			


74ALVC16373

www.fairchildsemi.com

6

74ALVC16373 Low Voltage 16-Bit Transparent Latch with 3.6V Tolerant Inputs and Outputs

www.fairchildsemi.com

8