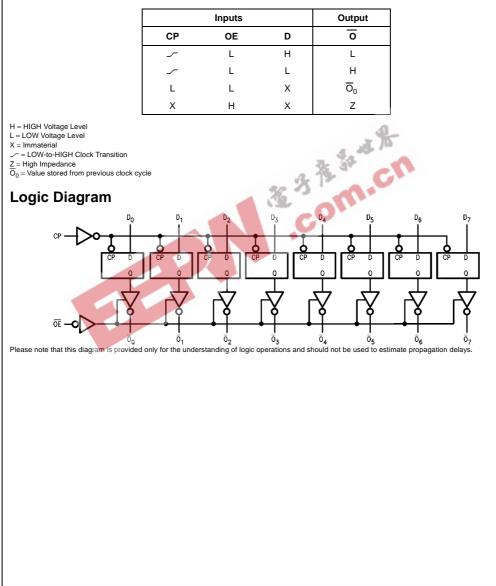


© 1999 Fairchild Semiconductor Corporation DS009965


74ACT534

Functional Description

The ACT534 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP)

transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Function Table

Absolute Maximum Ratings(Note 1)

	-
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V_{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V_{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I_{CC} or I_{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns

74ACT534

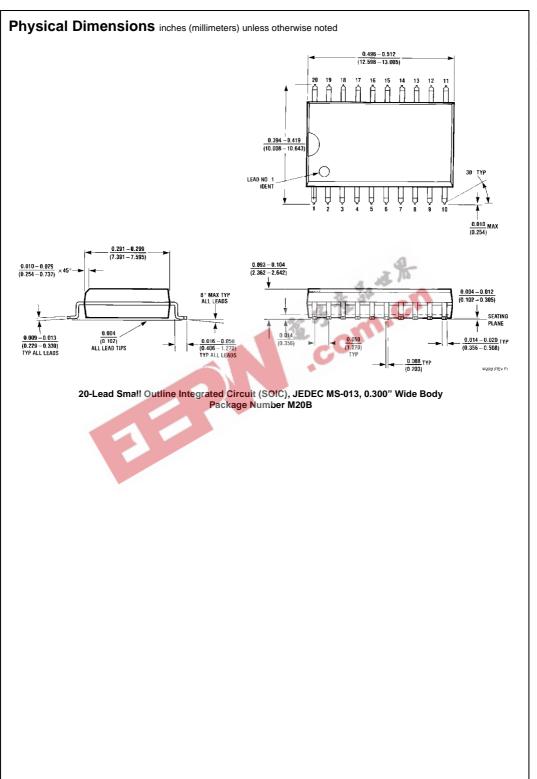
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Electrical Characteristics

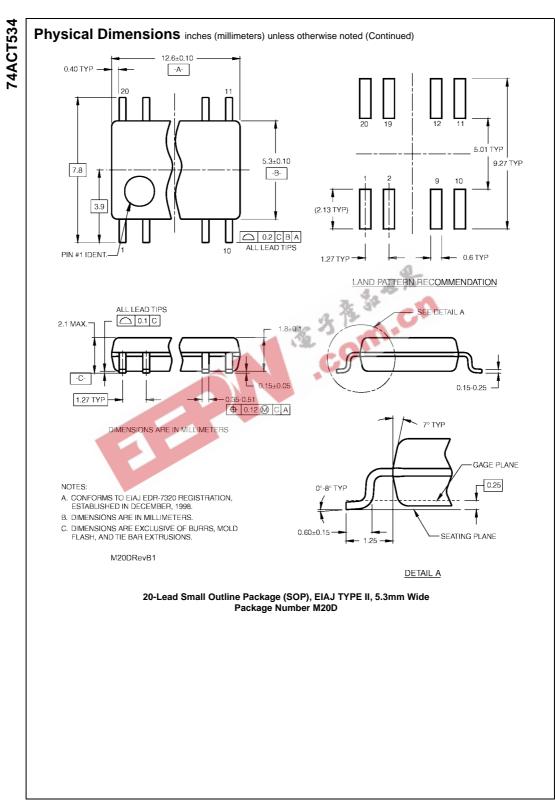
Symbol	Parameter	V _{cc}	T _A =	+25°C	T _A = -40°C to +85°C	Units	Conditions
		(V)	Тур		aranteed Limits	Unita	Conditions
VIH	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	v	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1		$I_{OUT} = 50 \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±0.1 ±1.0	μA	$V_I = V_{CC}$, GND
	Leakage Current	5.5		10.1	1.0	μΛ	$v_1 = v_{CC}$, GND
I _{OZ}	Maximum 3-STATE	5.5		±0.25	±2.5	μΑ	$V_I = V_{IL}, V_{IH}$
	Current	5.5		±0.25	±2.0		$V_{O} = V_{CC}$, GND
сст	Maximum	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
	I _{CC} /Input	5.5	0.0				v] = v _{CC} = 2.1v
OLD	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
OHD	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC}$
	Supply Current	5.5		4.0			or GND

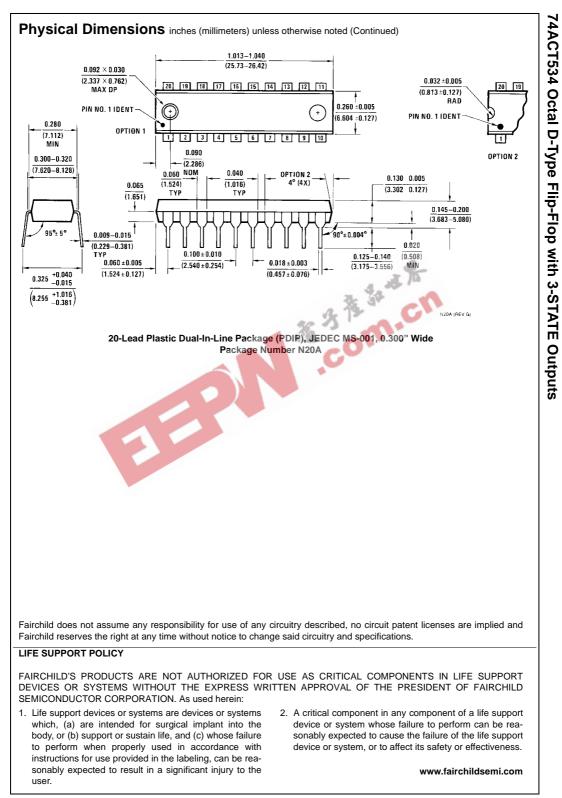
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

74ACT534


AC Electrical Characteristics

$T_A=-40^\circ C$ to $+85^\circ C$ v_{cc} $T_A = +25^{\circ}C$ Symbol (V) $C_L = 50 \ pF$ $C_L = 50 \ pF$ Units Parameter Min Max (Note 4) Тур Min Max Maximum Clock f_{MAX} 5.0 100 120 MHz Frequency Propagation Delay t_{PLH} 5.0 2.5 6.5 11.5 2.0 12.5 ns CP to \overline{Q}_n Propagation Delay t_{PHL} 5.0 2.0 6.0 10.5 12.0 2.0 ns CP to \overline{Q}_n Output Enable Time 5.0 2.5 6.5 12.0 2.0 12.5 ns t_{PZH} 5.0 2.0 6.0 11.0 2.0 11.5 Output Enable Time ns t_{PZL} Output Disable Time 5.0 1.5 7.0 12.5 1.0 13.5 ns t_{PHZ} Output Disable Time 10.5 t_{PLZ} Output Disable Time **Note 4:** Voltage Range 5.0 is 5.0V ± 0.5V 5.0 1.5 5.5 10.5 1.0 ns


AC Operating Requirements


Symbol	Parameter	(V)	T _A = +25°C C _L = 50 pF		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_{L} = 50 \text{ pF}$	Units
		(Note 5)	Тур	Guar	anteed Minimum	
t _S	Setup Time, HIGH or LOW D _n to CP	5.0	1.0	3.5	4.0	ns
t _H	Hold Time, HIGH or LOW D _n to CP	5.0	-1.0	1.0	1.5	ns
t _W	CP Pulse Width HIGH or LOW	5.0	2.0	3.5	3.5	ns

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	40.0	pF	$V_{CC} = 5.0V$

74ACT534

