

November 2001 Revised November 2001

74ALVC16827

Low Voltage 20-Bit Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16827 contains twenty non-inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/ receiver carrying parity. The device is byte controlled. Each byte has NOR output enables for maximum control flexibil-

The 74ALVC16827 is designed for low voltage (1.65V to 3.6V) $\ensuremath{\text{V}_{\text{CC}}}$ applications with I/O capability up to 3.6V.

The 74ALVC16827 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

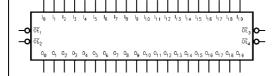
- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs

3.0 ns max for 3.0V to 3.6V V_{CC} 3.5 ns max for 2.3V to 2.7V \lor_{CC}

- 6.0 ns max for 1.65V to 1.95V $V_{\mbox{CC}}$
- Power-off high impedance inputs and outputs ■ Supports live insertion and withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance:

Human body model > 2000V

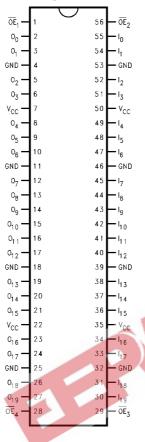
Machine model > 200V


Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the

Ordering Code:

Order Number	Package Number	Package Description
74ALVC16827MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

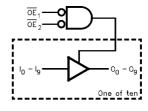
Pin Names	Description
\overline{OE}_n	Output Enable Input (Active LOW)
I ₀ -I ₁₉	Inputs
O ₀ -O ₁₉	Outputs

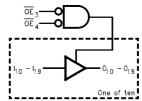
Connection Diagram

Truth Tables

	Outputs		
OE ₁	OE ₂	I ₀ –I ₉	O ₀ -O ₉
L	L	L	L
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z

	Inputs		Outputs
OE ₃	OE ₄	I ₀ –I ₉	O ₁₀ -O ₁₉
L	L	L	L
L	L	Н	Н
Н	Х	Х	z
Х	Н	Х	z


H = HIGH Voltage Level


X = Immaterial (HIGH or LOW, inputs may not float)
Z = High Impedance

Functional Description

The 74ALVC16827 contains twenty non-inverting buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by Output Enable (\overline{OE}_n) inputs. When \overline{OE}_1 , and \overline{OE}_2 are $LO\underline{W},\,O_0 \!\!-\!\!\!-\!\!\!O_{10}$ are in the 2-state mode. When either \overline{OE}_1 or $\overline{\text{OE}}_2$ are HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new <u>data</u> into the inputs. The same applies for byte two with $\overline{\text{OE}}_3$ and $\overline{\text{OE}}_4$.

Logic Diagrams

Absolute Maximum Ratings(Note 2)

Supply Voltage (V_{CC}) -0.5V to +4.6V DC Input Voltage (V_I) -0.5V to 4.6V

Output Voltage (V_O) (Note 3) -0.5V to V_{CC} +0.5V

DC Input Diode Current (I_{IK})

 $V_I < 0V$ -50 mA

DC Output Diode Current (I_{OK})

 $V_{O} < 0V$ -50 mA

DC Output Source/Sink Current

±50 mA (I_{OH}/I_{OL})

DC V_{CC} or GND Current per

Supply Pin (I_{CC} or GND) ±100 mA Storage Temperature Range (T_{STG})

-65°C to +150°C

Recommended Operating Conditions (Note 4)

Power Supply

1.65V to 3.6V Operating Input Voltage (V_I) 0V to V_{CC} 0V to $V_{\mbox{\footnotesize CC}}$ Output Voltage (V_O)

-40°C to +85°C Free Air Operating Temperature (T_A)

Minimum Input Edge Rate (Δt/ΔV)

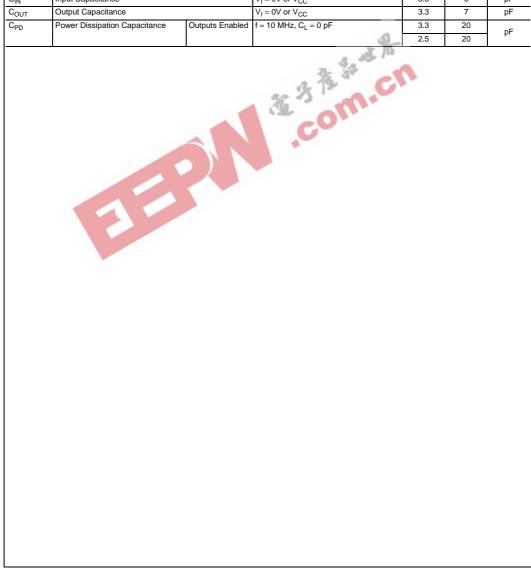
 $V_{\mbox{\footnotesize{IN}}} = 0.8 \mbox{\footnotesize{V}}$ to 2.0 V, $V_{\mbox{\footnotesize{CC}}} = 3.0 \mbox{\footnotesize{V}}$ 10 ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed, limited to 4.6V.

Note 4: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics


Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage	36 B	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6	0.65 x V _{CC} 1.7 2.0		٧
V _{IL}	LOW Level Input Voltage	o. 10	1.65 - 1.95 2.3 - 2.7 2.7 - 3.6		0.35 x V _{CC} 0.7 0.8	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$ $I_{OH} = -4 mA$	1.65 - 3.6 1.65	V _{CC} - 0.2 1.2 2.0		
	3	$I_{OH} = -6 \text{ mA}$ $I_{OH} = -12 \text{ mA}$	2.3 2.3 2.7 3.0	1.7 2.2 2.4		٧
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu\text{A}$ $I_{OL} = 4 \text{mA}$	1.65 - 3.6 1.65		0.2 0.45	
		I _{OL} = 6 mA I _{OL} = 12 mA	2.3		0.4	٧
		I _{OL} = 24 mA	3.0		0.4 0.55	
I _I	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μΑ

AC Electrical Characteristics

		$T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $R_L = 500\Omega$								
Symbol	Parameter	C _L = 50 pF			C _L = 30 pF				Units	
Oymboi		$V_{CC} = 3.3V \pm 0.3V$		V _{CC} = 2.7V		$V_{CC} = 2.5V \pm 0.2V$		$V_{CC} = 1.8V \pm 0.15V$		0,,,,,
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay	1.3	3	1.5	3.5	1.0	3.0	1.5	6.0	ns
t_{PZL}, t_{PZH}	Output Enable Time	1.3	4.3	1.5	5.4	1.0	4.9	1.5	9.8	ns
t_{PLZ}, t_{PHZ}	Output Disable Time	1.3	4.2	1.5	4.7	1.0	4.2	1.5	7.6	ns

Capacitance

Cumahal	Devenuetes		Conditions	T _A =	$T_A = +25^{\circ}C$	
Symbol	Parameter		Conditions	V _{CC}	Typical	Units
C _{IN}	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 0 pF	3.3	20	pF
			.0	2.5	20	Pi

AC Loading and Waveforms

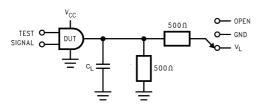


TABLE 1. Values for Figure 1

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t_{PZL} , t_{PLZ}	V_{L}
t _{PZH} , t _{PHZ}	GND

FIGURE 1. AC Test Circuit

TABLE 2. Variable Matrix (Input Characteristics: f= 1MHz; $t_r=t_f=$ 2ns; $Z_0=50\Omega)$

Symbol	V _{CC}						
Symbol	$3.3V \pm 0.3V$	2.7V	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$			
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2			
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2			
V _X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V			
V _Y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} - 0.15V	V _{OH} – 0.15V			
V _L	6V	6V	V _{CC} *2	V _{CC} *2			

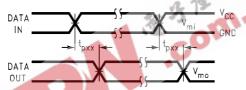


FIGURE 2. Waveform for Inverting and Non-Inverting Functions

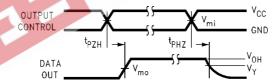


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

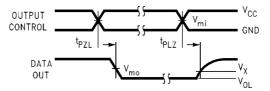
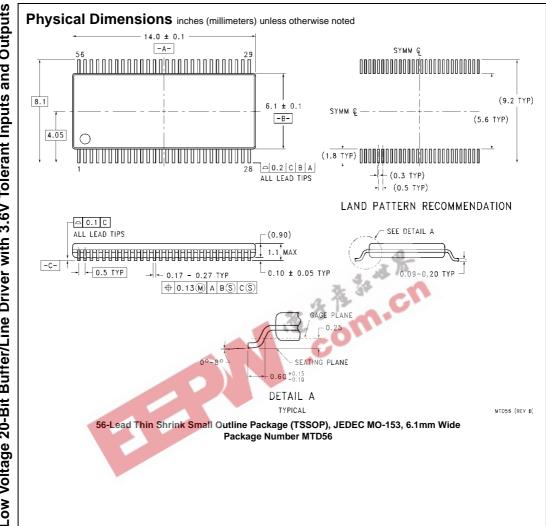



FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

5

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com