

February 1991 Revised February 2000

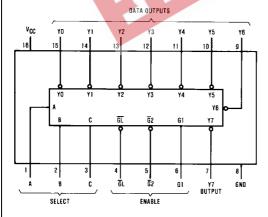
DM74ALS137 3 to 8 Line Decoder/Demultiplexer with Address Latches

General Description

The ALS137 is a three line to eight line decoder/demultiplexer with latches on the three address inputs. When the latch-enable input (\overline{GL}) is LOW, the ALS137 acts as a decoder/demultiplexer. When \overline{GL} goes from LOW-to-HIGH, the address present at the select inputs (A, B, and C) is stored in the latches. Further address changes are ignored as long as \overline{GL} remains HIGH. The output enable controls, G1 and $\overline{G2}$, control the state of the outputs independently of the select or latch-enable inputs. All of the outputs are HIGH unless G1 is HIGH and $\overline{G2}$ is LOW. The ALS137 is ideally suited for implementing glitch-free decoders in strobed (stored-address) applications in bus-oriented systems.

Features

- Combines decoder and 3-bit address latch
- Incorporates 3 enable inputs to simplify cascading
- Low power dissipation: 28 mW typ
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process



Ordering Code:

Order Number	Package Number	Package Description
DM74ALS137M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74ALS137N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagram

Function Table

Inputs				Outputs									
Enable			Select			Outputs							
GL	G1	G2	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Χ	Н	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Х	L	Χ	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
L	Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
L	Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
L	Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
Н	Н	L	Χ	Χ	Χ	Output corresponding to stored							
						address, L; all others, H							

- L = LOW State
- H = HIGH State
- X = Don't Care

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage Operating Free Air Temperature Range 0°C to +70°C

Storage Temperature Range

Typical θ_{JA}

N Package

104.0°C/W M Package

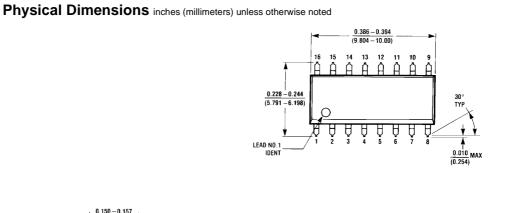
0°C to +70°C

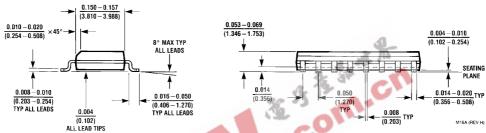
-65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

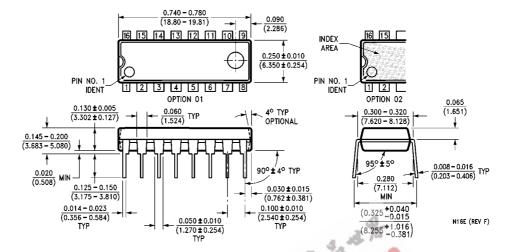
Symbol	Parameter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.5	5	5.5	V	
V _{IH}	HIGH Level Input Voltage	2			V	
V _{IL}	LOW Level Input Voltage			0.8	V	
Гон	HIGH Level Output Current			-0.4	mA	
I _{OL}	LOW Level Output Current			8	mA	
t _W	Width of Enabling Pulse	GL LOW	10	2. 53	-	ns
t _{SU}	Setup Time (Note 2)	A, B, C	10↑	13	<i>S</i> / <i>Y</i>	ns
t _H	Hold Time (Note 2)	A, B, C	5↑	-01		ns
T _A	Free Air Operating Temperature		0	011	70	°C


Note 2: The arrow (1) indicates the positive edge of the GL input pulse is used for reference


Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_{I} = -18 \text{ mA}$				-1.5	V	
V _{OH}	HIGH Level	$I_{OH} = -0.4 \text{ mA}$		V _{CC} - 2			V	
	Output Volta <mark>ge</mark>	V _{CC} = 4.5V to 5.5V	$V_{CC} = 4.5V \text{ to } 5.5V$				· ·	
V _{OL}	LOW Level	V _{CC} = 4.5V	I _{OL} = 4 mA		0.25	0.4	٧	
	Output Voltage		I _{OL} = 8 mA		0.35	0.5	V	
I	Input Current @ Maximum	V _{CC} = 5.5V	Enable			0.1	mA	
	Input Voltage	$V_{IH} = 7V$	A, B, C			0.1	mA	
I _{IH}	HIGH Level	V _{CC} = 5.5V Enable				20	μА	
	Input Current	V _{IH} = 2.7V	A, B, C			20	μА	
I _{IL}	LOW Level	V _{CC} = 5.5V	Enable			-0.1	mA	
	Input Current	$V_{IL} = 0.4V$	A, B, C			-0.1		
I _O	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA	
I _{CC}	Supply Current	V _{CC} = 5.5V			5	11	mA	


Switching Characteristics From (Input) Symbol Conditions Min Max Units Parameter To (Output) $V_{CC} = 4.5V \text{ to } 5.5V$ Propagation Delay Time A, B, C 5 20 ns $R_L=500\Omega$ LOW-to-HIGH Level Output to Y $C_L = 50 \ pF$ A, B, C t_{PHL} Propagation Delay Time 6 20 ns HIGH-to-LOW Level Output to Y G2 t_{PLH} Propagation Delay Time 4 12 LOW-to-HIGH Level Output to Y G2 Propagation Delay Time 5 15 ns HIGH-to-LOW Level Output to Y G1 t_{PLH} Propagation Delay Time 5 17 LOW-to-HIGH Level Output to Y G1 to Y GL to Y GL to Y t_{PHL} Propagation Delay Time G1 5 15 HIGH-to-LOW Level Output Propagation Delay Time t_{PLH} 7 22 ns LOW-to-HIGH Level Output t_{PHL} Propagation Delay Time 20 HIGH-to-LOW Level Output

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com