
Technical Data

Data sheet acquired from Harris Semiconductor SCHS292

Octal D-Type Flip-Flop, 3-State Positive-Edge-Triggered

CD54/74AC/ACT564 - Inverting CD54/74AC/ACT574 - Non-Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 6.5 ns @ Vcc = 5 V, TA = 25°C, CL = 50 pF

FUNCTIONAL DIAGRAM

The RCA-CD54/74AC564 and CD54/74AC574 and the CD54/74ACT564 and CD54/74ACT574 octal D-type, 3state, positive-edge-triggered flip-flops use the RCA ADVANCED CMOS technology. The eight flip-flops enter data into their registers on the LOW-to-HIGH transition of the clock (CP). The Output Enable (OE) controls the 3-state outputs and is independent of the register operation. When the Output Enable (OE) is HIGH, the outputs are in the high-impedance state. The CD54/74AC/ACT564 and CD54/74AC/ACT574 share the same pin configurations; the CD54/74AC/ACT564, however, has inverted outputs and the CD54/74AC/ACT574 has non-inverted outputs

The CD74AC/ACT564 and CD74AC/ACT574 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT564 and CD54AC/ACT574, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

■ Exceeds 2-kV ESD Protection - MIL-STD-883, Method 3015

CD54/74AC564, CD54/74AC574

- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TRUTH TABLE

	INPUTS	•	OUT	PUTS	
			564	574	
ŌĒ	СР	Dn	Qn	Qn	
L		Н	L	Н	
L		L	Н	L	
L	L	Х	QΘ	QO	
Н	X	Х	Z	Z	

H = High level (steady state)

L = Low level (steady state)

X = Don't care

= Transition from low to high level

QO = The level of Q before the indicated steady-state input conditions were established

= The level of $\overline{\mathbf{Q}}$ before the indicated steady-state input conditions were established.

Z = High impedance

This data sheet is applicable to the CD54/74AC574 and CD54/74AC574. The CD54/74AC564 and CD54/74ACT564 were not acquired from Harris Semiconductor.

Technical Data

CD54/74AC564, CD54/74AC574 CD54/74ACT564, CD54/74ACT574

	MAXIMUM RATINGS, Absolute-Maximum Values:
0.5 to 6 V	DC SUPPLY-VOLTAGE (Vcc)
	DC INPUT DIODE CURRENT, I_{iK} (for $V_i < -0.5 \text{ V or } V_i > V_{CC} + 0.5 \text{ V}$
$_{\infty}$ + 0.5 V) \pm 50 mA	DC OUTPUT DIODE CURRENT, lok (for Vo < -0.5 V or Vo > \
	DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I
±100 mA*	DC Vcc or GROUND CURRENT (Icc or Igno)
	POWER DISSIPATION PER PACKAGE (PD):
500 mW	
Derate Linearly at 8 mW/°C to 300 mW	For $T_A = +100$ to $+125$ °C (PACKAGE TYPE E)
Derate Linearly at 6 mW/°C to 70 mW	For $T_A = +70$ to $+125$ °C (PACKAGE TYPE M)
55 to +125°C	OPERATING-TEMPERATURE RANGE (TA):
65 to +150°C	STORAGE TEMPERATURE (Tstg)
	LEAD TEMPERATURE (DURING SOLDERING):

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

OULD ACTEDIATIO 38 O	LIN	NITS	LINUTC
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range, V _{Cc} *: (For T _A = Full Package-Temperature Range) AC Types ACT Types	1.5 4.5	5.5 5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, Ta:	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0 0	50 20 10	ns/V ns/V ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT DIAGRAMS

CD54/74AC/ACT564

CD54/74AC/ACT574

^{*}For up to 4 outputs per device; add \pm 25 mA for each additional output.

STATIC ELECTRICAL CHARACTERISTICS: AC Series

ī			••			AMBIEN	T TEMPE	RATUR	E (T _A) - °	С	
CHARACTERISTICS		TEST CONDITIONS		V _{cc}	+	25	-40 t	o +85	-55 t	o +125	UNITS
		, V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2	_	1.2		1.2	1-	
Voltage	VIH			3	2.1	l –	2.1	_	2.1	_	7 v
				5.5	3.85		3.85		3.85		1 .
Low-Level Input				1.5	_	0.3	_	0.3	_	0.3	
Voltage	VIL			3	_	0.9		0.9	· —	0.9	1 v
				5.5		1.65	_	1.65	_	1.65	1
High-Level Output	,		-0.05	1.5	1.4	_	1.4		1.4		1
Voltage	V _{он}	V _{IH}	-0.05	3	2.9		2.9		2.9		1
		or	-0.05	4.5	4.4		4.4		4.4		1
		V _{IL}	-4	3	2.58	_	2.48	_	2.4	_	l v
	-		-24	4.5	3.94		3.8	_	3.7		
			-75	5.5	_		3.85		_	_	1
		#, * {	-50	5.5	_	-3,	10-11		3.85	_	1
Low-Level Output			0.05	1.5	- 4	0.1		0.1	_	0.1	
Voltage	Vol	Vн	0.05	3	20 7	0.1	14	0.1	_	0.1	1
		or	0.05	4.5	V.L.	0.1	_	0.1	_	0.1	v
		V _{IL}	12	3	- 6	0.36	_	0.44	_	0.5	1
			24	4.5	_	0.36	_	0.44	_	0.5	
			75	5.5	_	_	_	1.65	_	_	
		#. * {	50	5.5	_	_	_	_	_	1.65	
Input Leakage Current	l ₁	V _{cc} or GND		5.5	_	±0.1		±1		±1	μΑ
3-State Leakage		VIH									
Current	loz	or									
		VıL									
		V _o =		5.5	_	±0.5	_	±5		±10	μA
		Vcc]					-			•
		or									
		GND				.*		٠			
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5		8	-	80		160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize

power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

		5			AMBIENT TEMPERATURE (TA) - °C						
CHARACTERISTICS		TEST CO	NDITIONS	V _{cc}	+25		-40 to	o +85	-55 to	o.+125	UNITS
		(V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	ONITS
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2	_	2	_	2	_	V
Low-Level Input Voltage	Vil			4.5 to 5.5	_	0.8	_	0.8		0.8	V
High-Level Output		ViH	-0.05	4.5	4.4		4.4	_	4.4	_	<u> </u>
Voltage	V _{OH}	or 	-24	4.5	3.94	_	3.8	_	3.7	_	v
		VIL.	-75	5.5	_		3.85		_		1 *
		#, * {	-50	5.5	[_		_	3.85	<u> </u>	1
Low-Level Output		V _{IH}	0.05	4.5		±0.1		±.1		±.1	
Voltage	Vol	or	24	4.5		0.36	_	0.44		0.5	v
		Vil s	75	5.5	_			1.65	_	_	
		#, * {	50	5.5			4 30	- /	_	1.65	
Input Leakage Current	ŀ	V _{cc} or GND		5.5	_ 3	±0.1	\$ 3r	±1		±1 .	μΑ
3-State Leakage Current	l _{oz}	VIH Or VIL		1		C					
		V _o = V _{cc} or GND		5.5	_	±0.5		±5		±10	μΑ
Quiescent Supply Current, MSI	Icc	V∞ or GND	0	5.5		8	_	80		160	μΑ
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5	—	2.4	<u></u> :	2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOADS*
D, ŌE	0.7
CP	1,17

^{*}Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

PREREQUISITE FOR SWITCHING: AC Series

			AMBI	ENT TEMP	ERATURE (1	Γ _A) -°C	
CHARACTERISTICS	SYMBOL	V _{cc} (V)		o +85		+125	UNITS
		(v)	MIN.	MAX.	MIN.	MAX.	
Clock Pulse Width	tw	1.5 3.3* 5†	44 4.9 3.5	=	50 5.6 4		ns
Setup Time Data to Clock	tsu	1.5 3.3 5	2 2 2		2 2 2	_ _ _	ns
Hold Time Data to Clock	ţ t H	1.5 3.3 5	2 2 2	_ _ _	2 2 2	_ , 	ns
Maximum Clock Frequency	fmax	1.5 3.3 5	11 101 143	 _ _	10 89 125	_ _ _	MHz

*3.3 V: min. is @ 3 V †5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t_r , t_t = 3 ns, C_L = 50 pF

	1.	T	AMBI	ENT TEMP	RATURE (T _A) -°C	Τ
CHARACTERISTICS	SYMBOL	V _{cc} (V)		o +85	1 -	0 +125	UNITS
	1	2	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: Clock to Q AC574	tplH tpHL	1.5 3.3* 5†	- 4 2.9	123 13.7 9.8	 3.8 2.7	135 15.1 10.8	ns
Clock to Q AC564	t _{PLH}	1.5 3.3 5	4.1 2.9	128 14.4 10.3	_ 4 2.8	141 15.8 11.3	ns
Output Enable to Q, Ō	t _{PZL} t _{PZH}	1.5 3.3 5	5.6 3.7	165 19.2 13.2	_ 5.5 3.6	181 21.8 14.5	ns
Output Disable to Q, Q	t _{PLZ} t _{PHZ}	1.5 3.3 5	4.7 3.7	165 16.5 13.2	4.5 3.6	181 18.1 14.5	ns
Power Dissipation Capacitance	C _{PD} §	_	67 1	Гур.	67	Гур.	pF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See . Fig. 1	5	4 Typ. @ 25°C				V
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5		1 Typ. (⊚ 25°C	:	٧
Input Capacitance	Cı		-	10	_	10	pF
3-State Output Capacitance	Co		_	15		15	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V †5 V: min. is @ 5.5 V max. is @ 4.5 V

 $\mbox{\S}C_{PD}$ is used to determine the dynamic power consumption, per flip flop. $P_D = C_{PD} \; V_{CC}^2 \; f_i + \Sigma \; V_{CC}^2 \; f_D \; C_L \; \mbox{where} \quad f_i = \mbox{input frequency}$

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage.

Technical Data ____

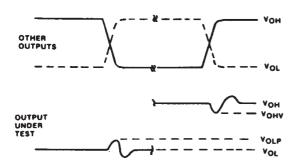
CD54/74AC564, CD54/74AC574 CD54/74ACT564, CD54/74ACT574

PREREQUISITE FOR SWITCHING: ACT Series

			AMBI	ENT TEMPE	RATURE (1	(A) -°C	
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	+125	UNITS
		(*)	MIN.	MAX.	MIN.	MAX.	
Clock Pulse Width	tw	5†	3.9	_	4.5	_	ns
Setup Time Data to Clock	t _{su}	5	2	-	2	_	ns
Hold Time Data to Clock	t _H	5	2.6	_	3		ns
Maximum Clock Frequency	f _{MAX}	5	125		110		MHz

†5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; $t_{\rm r}$, $t_{\rm t}$ = 3 ns, $C_{\rm L}$ = 50 pF


				AMBIENT TEMPERATURE (TA) -°C				
CHARACTERISTICS	SYMBOL	YMBOL V _{cc}		o +85	-55 to +125		UNITS	
	0	(V)	MIN.	MAX.	MIN.	MAX.]	
Propagation Delays: Clock to Q ACT574	tpLH tpHL	5†	2.9	10.2	2.8	11.2	ns	
Clock to Q ACT564	t _{PLH} t _{PHL}	5	3	10.6	2.9	11.7	ns	
Output Enable and Disable to Q ACT574	tplz tpHz tpZL tpZH	5	3.7	13.2	3.6	14.5	ns	
Output Enable and Disable to Q ACT564	tplz tpHz tpzL tpzH	5	3.7	13.2	3.6	14.5	ns	
Power Dissipation Capacitance	C _{PO} §	_	67	Тур	67	Тур.	pF	
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5		4 Typ. @ 25°C			V	
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5		1 Typ.	@.25°C		V	
Input Capacitance	Cı			10		10	pF	
3-State Output Capacitance	Co			15		15	pF	

†5 V: min. is @ 5.5 V max. is @ 4.5 V

 $\S{C_{PD}}$ is used to determine the dynamic power consumption, per flip flop. $P_D = C_{PD} \ V_{CC}^2 \ f_i + \Sigma \ V_{CC}^2 \ f_0 \ C_L + V_{CC} \ \Delta I_{CC}$ where $f_i =$ input frequency

 f_0 = output frequency C_L = output load capacitance V_{CC} = supply voltage.

PARAMETER MEASUREMENT INFORMATION

NOTES:

- NOTES:

 1. V_{OHY} AND V_{OLP} ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.

 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS:
 PRR ≤ 1 MHz, I_T = 3 ns, I_T = 3 ns, SKEW 1 ns.

 3. R.F. FIXTURE WITH 700-MHZ DESIGN RULES REQUIRED.
 IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 13 L.E. CARBUSTON. WITH 0.1 JF CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

9205-42406

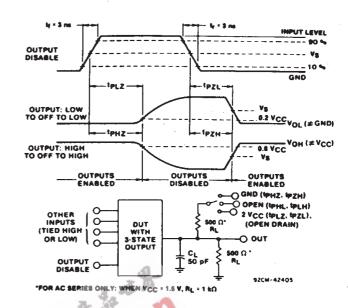
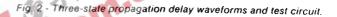
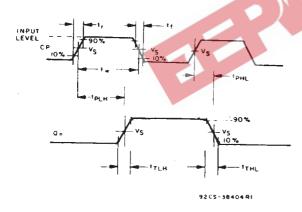
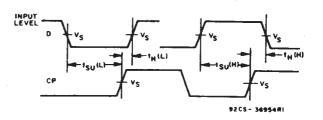
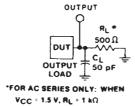






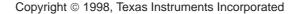
Fig. 1 - Simultaneous switching transient waveforms.

9255 42389

	CD54/74AC	CD54/74ACT
Input Level	V _{cc}	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{CC}	0.5 V _{cc}

Fig. 3 - Propagation delays times and test circuit.

IMPORTANT NOTICE


Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

