
## Technical Data \_\_\_\_\_\_ CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

TEXAS INSTRUMENTS Data sheet acquired from Harris Semiconductor SCH5285A – Revised November 1999



## **Octal Buffer/Line Drivers, 3-State**

CD74AC/ACT540 - Inverting CD74AC/ACT541 - Non-Inverting

### **Type Features:**

- Buffered inputs
- Typical propagation delay: 4.5 ns @ V<sub>cc</sub> = 5 V, T<sub>A</sub> = 25° C, C<sub>L</sub> = 50 pF
- The CD54/74AC540, -541, and CD54/74ACT540, -541 octal buffer/line drivers use the RCA ADVANCED CMOS technology. The CD54/74AC/AC/AC540, are inverting 2 state buffers building two

CD54/74AC/ACT540 are inverting 3-state buffers having two active-LOW output enables. The CD54/74AC/ACT541 are non-inverting 3-state buffers having two active-LOW output enables.

The CD74AC540, -541, and CD74ACT540, -541 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Industrial (-40 to +85°C) and Extended Industrial/Military (-55 to +125°C).

The CD54AC540, -541, and CD54ACT540, -541, available in chip form (H suffix), are operable over the -55 to  $+125^{\circ}$ C temperature range.

- Family Features:
- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
  Speed of bipolar FAST®/AS/S with significantly
- reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply.
  - ± 24-mA output drive current
    - Fanout to 15 FAST® ICs
    - Drives 50-ohm transmission lines

**®FAST is a Registered Trademark of Fairchild Semiconductor Corp.** 

#### TRUTH TABLE

|          | CD54/74AC/ACT540 |         |  |  |  |  |  |  |
|----------|------------------|---------|--|--|--|--|--|--|
| INPUTS   |                  | OUTPUTS |  |  |  |  |  |  |
| OE1, OE2 | A                | Ŷ       |  |  |  |  |  |  |
| L        | L                | Н       |  |  |  |  |  |  |
| L        | н                | L       |  |  |  |  |  |  |
| н        | x                | Ζ       |  |  |  |  |  |  |

H = High Voltage

L = Low Voltage

X = Immaterial

Z = High Impedance

#### TRUTH TABLE

|          | CD54/74AC/ACT541 |   |  |  |  |  |  |  |  |
|----------|------------------|---|--|--|--|--|--|--|--|
| INPUTS   | INPUTS OUTPUTS   |   |  |  |  |  |  |  |  |
| OE1, OE2 | A                | Y |  |  |  |  |  |  |  |
| L        | L                | L |  |  |  |  |  |  |  |
| L        | н                | н |  |  |  |  |  |  |  |
| н        | x                | Z |  |  |  |  |  |  |  |

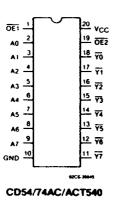
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



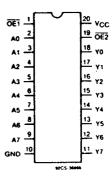
Copyright © 1999, Texas Instruments Incorporated

# CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

| MAXIMUM RATINGS, Absolute-Maximum Values:                                                                                                 |          |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| DC SUPPLY-VOLTAGE (V <sub>CC</sub> )                                                                                                      |          |
| DC INPUT DIODE CURRENT, I <sub>IK</sub> (for V <sub>I</sub> < $-0.5$ or V <sub>I</sub> > V <sub>CC</sub> + 0.5 V)                         | ±20 mA   |
| DC OUTPUT DIODE CURRENT, $I_{OK}$ (for $V_O < -0.5$ or $V_O > V_{CC} + 0.5$ V)                                                            | ±50 mA   |
| DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I <sub>O</sub> (for V <sub>O</sub> > $-0.5$ or V <sub>O</sub> < V <sub>CC</sub> + 0.5 V) | ±50 mA   |
| DC V <sub>CC</sub> OR GROUND CURRENT (I <sub>CC</sub> or I <sub>GND</sub> )                                                               | ±100 mA* |
| PACKAGE THERMAL IMPEDANCE, θ <sub>JA</sub> (see Note 1): E package                                                                        |          |
| M package                                                                                                                                 |          |
| STORAGE TEMPERATURE (T <sub>sta</sub> )                                                                                                   |          |
| LEAD TEMPERATURE (DURING SOLDERING):                                                                                                      |          |
| At distance 1/16 $\pm$ 1/32 in. (1.59 $\pm$ 0.79 mm) from case for 10 s maximum                                                           | +265°C   |
| Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only                                       | +300°C   |
| $^{\star}$ For up to 4 outputs per device: add $\pm 25$ mA for each additional output.                                                    |          |


NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

#### **RECOMMENDED OPERATING CONDITIONS:**


For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

| CUARACTERICTIC                                                                                                                      | 3 12 0 | LIN         | IITS           |                      |
|-------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|----------------|----------------------|
| CHARACTERISTIC                                                                                                                      | 36 2   | MIN.        | MAX.           | UNITS                |
| Supply-Voltage Range, $V_{CC}^*$ :<br>(For T <sub>A</sub> = Full Package-Temperature Range)<br>AC Types<br>ACT Types                | ·con   | 1.5<br>4.5  | 5.5<br>5.5     | v<br>v               |
| DC Input or Output Voltage, Vi, Vo                                                                                                  |        | 0           | Vcc            | V                    |
| Operating Temperature, T <sub>A</sub> :                                                                                             |        | -55         | +125           | °C                   |
| Input Rise and Fall Slew Rate, dt/dv<br>at 1.5 V to 3 V (AC Types)<br>at 3.6 V to 5.5 V (AC Types)<br>at 4.5 V to 5.5 V (ACT Types) |        | 0<br>0<br>0 | 50<br>20<br>10 | ns/V<br>ns/V<br>ns/V |

\*Unless otherwise specified, all voltages are referenced to ground.



#### TERMINAL ASSIGNMENT DIAGRAMS



CD54/74AC/ACT541

# Technical Data CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

STATIC ELECTRICAL CHARACTERISTICS: AC Series

|                                  |                 |                              |                        |                 |        | AMBIENT            | TEMPE  | RATURE   | (T <sub>A</sub> ) - °( |      | ]     |
|----------------------------------|-----------------|------------------------------|------------------------|-----------------|--------|--------------------|--------|----------|------------------------|------|-------|
| CHARACTERIST                     | rics            | TEST CO                      | NDITIONS               | V <sub>cc</sub> | +:     | 25                 | -40 to | o +85    | -55 to                 | +125 | UNITS |
|                                  |                 | V,<br>(V)                    | l <sub>o</sub><br>(mA) | (Ÿ)             | MIN.   | MAX.               | MIN.   | MAX.     | MIN.                   | MAX. |       |
| High-Level Input                 |                 |                              |                        | 1.5             | 1.2    | —                  | 1.2    | -        | 1.2                    | _    |       |
| Voltage                          | ViH             |                              |                        | 3               | 2.1    | _                  | 2.1    | _        | 2.1                    | -    | v     |
|                                  |                 |                              |                        | 5.5             | 3.85   |                    | 3.85   | —        | 3.85                   |      |       |
| Low-Level Input                  |                 |                              |                        | 1.5             | -      | 0.3                | —      | 0.3      |                        | 0.3  |       |
| Voltage                          | Vil             |                              |                        | 3               | -      | 0.9                | -      | 0.9      |                        | 0.9  | V     |
|                                  |                 |                              |                        | 5.5             |        | 1.65               | _      | 1.65     |                        | 1.65 |       |
| High-Level Output                |                 |                              | -0.05                  | 1.5             | 1.4    | —                  | 1.4    | —        | 1.4                    |      |       |
| Voltage                          | V <sub>он</sub> | Vie                          | -0.05                  | 3               | 2.9    |                    | 2.9    | _        | 2.9                    | _    |       |
|                                  |                 | or                           | -0.05                  | 4.5             | 4.4    | —                  | . 4.4  | —        | 4.4                    | —    | ]     |
|                                  |                 | ViL                          | -4                     | 3               | 2.58   | -                  | 2.48   |          | 2.4                    |      | ] v   |
|                                  |                 |                              | -24                    | 4.5             | 3.94   | - <del>1</del> , 3 | 3.8    | —        | 3.7                    | —    | ]     |
|                                  |                 | #, <b>★</b>                  | -75                    | 5.5             | - 1    | 4                  | 3.85   | <u> </u> | —                      | _    | ]     |
|                                  |                 | <b>"</b> , " )               | -50                    | 5.5             | w - 25 | -                  |        |          | 3.85                   | _    |       |
| Low-Level Output                 |                 |                              | 0.05                   | 1.5             | 32-    | 0.1                |        | 0.1      | —                      | 0.1  |       |
| Voltage                          | Vol             | VIH                          | 0.05                   | 3               | -6     | 0.1                | -      | 0.1      |                        | 0.1  |       |
|                                  |                 | or                           | 0.05                   | 4.5             | 4      | 0.1                | _      | 0.1      | -                      | 0.1  | ]     |
|                                  |                 | VIL                          | 12                     | 3               |        | 0.36               | _      | 0.44     | -                      | 0.5  | V     |
|                                  |                 |                              | 24                     | 4.5             | _      | 0.36               | —      | 0.44     | _                      | 0.5  | ]     |
|                                  |                 | #, * {                       | 75                     | 5.5             | _      |                    | _      | 1.65     | -                      | -    | ]     |
|                                  |                 | <b>"</b> , "                 | 50                     | 5.5             |        | -                  | _      | -        | —                      | 1.65 |       |
| Input Leakage<br>Current         | h               | V <sub>cc</sub><br>or<br>GND |                        | 5.5             | -      | ±0.1               | -      | ±1       | -                      | ±1   | μA    |
| 3-State Leakage                  |                 | ViH                          |                        |                 |        |                    |        |          |                        |      |       |
| Current                          | loz             | or                           |                        |                 |        |                    |        |          |                        |      |       |
|                                  |                 | Vil                          |                        |                 |        |                    |        |          | 1                      |      |       |
|                                  |                 | Vo =                         |                        | 5.5             | _      | ±0.5               | —      | ±5       | -                      | ±10  | μA    |
|                                  |                 | Vcc                          |                        |                 |        |                    |        |          |                        |      |       |
|                                  |                 | or                           |                        |                 |        |                    |        |          | 1                      | 1    |       |
|                                  |                 | GND                          |                        |                 |        |                    |        |          |                        |      |       |
| Quiescent Supply<br>Current, MSI | lcc             | V <sub>cc</sub><br>or<br>GND | 0                      | 5.5             | _      | 8                  | -      | 80       | _                      | 160  | μA    |

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. \* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

### STATIC ELECTRICAL CHARACTERISTICS: ACT Series

|                                                                                   |                 |                                                  |                        |                  | AMBIENT TEMPERATURE (T <sub>A</sub> ) - °C |      |      |       |             |      |     |
|-----------------------------------------------------------------------------------|-----------------|--------------------------------------------------|------------------------|------------------|--------------------------------------------|------|------|-------|-------------|------|-----|
| CHARACTERISTICS                                                                   |                 | TEST CONDITIONS                                  |                        | V <sub>cc</sub>  | +:                                         | +25  |      | o +85 | -55 to +125 |      |     |
|                                                                                   |                 | V,<br>(V)                                        | l <sub>o</sub><br>(mA) | (V)              | MIN.                                       | MAX. | MIN. | MAX.  | MIN.        | MAX. | 1   |
| High-Level Input<br>Voltage                                                       | Ин              |                                                  |                        | 4.5<br>to<br>5.5 | 2                                          | _    | 2    | _     | 2           | -    | v   |
| Low-Level Input<br>Voltage                                                        | ViL             |                                                  |                        | 4.5<br>to<br>5.5 |                                            | 0.8  |      | 0.8   | _           | 0.8  | v   |
| High-Level Output                                                                 |                 | ViH                                              | -0.05                  | 4.5              | 4.4                                        | —    | 4.4  | _     | 4.4         | —    |     |
| Voltage                                                                           | V <sub>OH</sub> | or<br>V <sub>IL</sub>                            | -24                    | 4.5              | 3.94                                       |      | 3.8  | —     | 3.7         |      | l v |
|                                                                                   |                 | #. * {                                           | -75                    | 5.5              | -                                          | —    | 3.85 | _     | _           | -    | ] ' |
|                                                                                   |                 | "· )                                             | -50                    | <b>5</b> .5      | ·                                          | _    | _    |       | 3.85        |      | ]   |
| Low-Level Output                                                                  |                 | ViH                                              | 0.05                   | 4.5              | —                                          | 0.1  |      | 0.1   | -           | 0.1  |     |
| Voltage Vo                                                                        | Vol             | or<br>ViL                                        | 24                     | 4.5              | -                                          | 0.36 |      | 0.44  | —           | 0.5  | l v |
|                                                                                   |                 | #. * {                                           | 75                     | 5.5              |                                            |      | 10-  | 1.65  | —           | —    | ] ` |
|                                                                                   |                 | ··· )                                            | 50                     | 5.5              | -                                          | 1-13 |      | 2-    | —           | 1.65 |     |
| Input Leakage<br>Current                                                          | ١,              | V <sub>cc</sub><br>or<br>GND                     |                        | <b>5</b> .5      | _3                                         | ±0.1 | w.   | ±1    |             | ±1   | μA  |
| 3-State Leakage<br>Current                                                        | loz             | V <sub>IH</sub><br>or<br>V <sub>IL</sub>         | Ó                      |                  |                                            |      |      |       |             |      |     |
|                                                                                   |                 | V <sub>o</sub> =<br>V <sub>cc</sub><br>or<br>GND |                        | 5.5              | _                                          | ±0.5 |      | ±5    |             | ±10  | μA  |
| Quiescent Supply<br>Current, MSI                                                  | lcc             | V <sub>cc</sub><br>or<br>GND                     | 0                      | 5.5              | —                                          | 8    | —    | 80    |             | 160  | μA  |
| Additional Quiescent S<br>Current per Input Pir<br>TTL Inputs High<br>1 Unit Load |                 | V <sub>cc</sub> -2.1                             |                        | 4.5<br>to<br>5.5 |                                            | 2.4  |      | 2.8   |             | 3    | mA  |

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

\* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

### ACT INPUT LOADING TABLE

| INPUT    | UNIT LOAD* |     |  |  |  |  |
|----------|------------|-----|--|--|--|--|
|          | 540        | 541 |  |  |  |  |
| DATA     | 1.42       | 0.5 |  |  |  |  |
| OE1, OE2 | 1.3        | 1.3 |  |  |  |  |

\*Unit load is ΔI<sub>cc</sub> limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

Technical Data CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

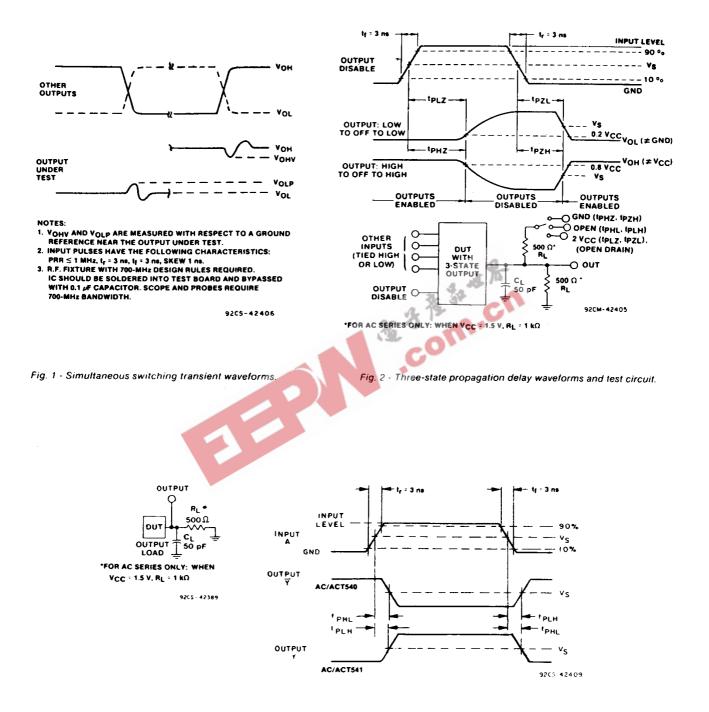
SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, CL = 50 pF

|                                                                                                         |                                   |                   | AMBI           | ENT TEMPE                    | RATURE (T    | (A) - °C          |    |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|----------------|------------------------------|--------------|-------------------|----|
| CHARACTERISTICS                                                                                         | SYMBOL                            | L (V) -40 to +85  |                | o +85                        | -55 to +125  |                   |    |
|                                                                                                         |                                   |                   | MIN.           | MAX.                         | MIN.         | MAX.              | 1  |
| Propagation Delays:<br>Data to Output<br>AC540                                                          | tрін<br>tphl                      | 1.5<br>3.3*<br>5† | 2.4<br>1.8     | 77<br>8.6<br>6.2             | 2.4<br>1.7   | 85<br>9.5<br>6.8  | ns |
| AC541                                                                                                   | t <sub>РLH</sub><br>tphL          | 1.5<br>3.3<br>5   | <br>2.8<br>2.1 | 89<br>9.9<br>7.1             | <br>2.7<br>2 | 98<br>10.9<br>7.8 | ns |
| Enable, to Output<br>to Output                                                                          | tezi<br>tezh                      | 1.5<br>3.3<br>5   | <br>4.6<br>3.1 | 136<br>16.4<br>10.9          | <br>4.5<br>3 | 150<br>18<br>12   | ns |
| Disable to Output<br>to Output                                                                          | telz<br>tehz                      | 1.5<br>3.3<br>5   | <br>3.9<br>3.1 | 136<br>13.6<br>10.9          | <br>3.8<br>3 | 150<br>15<br>12   | ns |
| Power Dissipation Capacitance<br>AC540<br>AC541                                                         | CPD‡                              |                   |                | <b>Ту</b> р.<br>Тур <b>.</b> | 60 1<br>60 1 |                   | pF |
| Min. (Valley) V <sub>он</sub><br>During Switching of Other Outputs<br>(Output Under Test Not Switching) | V <sub>онv</sub><br>See<br>Fig. 1 | 5                 | 4 Typ. @ 25°C  |                              |              |                   | v  |
| Max. (Peak) VoL<br>During Switching of Other Outputs<br>(Output Under Test Not Switching)               | Volp<br>See<br>Fig. 1             | 5                 | on             | 1 Тур. (                     | @ 25°C       |                   | v  |
| Input Capacitance                                                                                       | Cı                                | - /               | - 1            | 10                           | -            | 10                | pF |
| 3-State Output Capacitance                                                                              | Co                                | — — · · ·         | -              | 15                           |              | 15                | pF |

### SWITCHING CHARACTERISTICS: ACT Series; t, t = 3 ns, C = 50 pF

|                                                                                                         |                                      |          | AMBI          | AMBIENT TEMPERATURE (TA) - °C |        |              |       |  |  |
|---------------------------------------------------------------------------------------------------------|--------------------------------------|----------|---------------|-------------------------------|--------|--------------|-------|--|--|
| CHARACTERISTICS                                                                                         | SYMBOL                               |          | -40 1         | to +85                        | -55 to | o =125       | UNITS |  |  |
|                                                                                                         |                                      | (V)      | MIN.          | MAX.                          | MIN.   | MAX.         |       |  |  |
| Propagation Delays:<br>Data to Output<br>ACT540                                                         | tрін<br>tphl                         | 5†       | 1.9           | 6.5                           | 1.8    | 7.2          | ns    |  |  |
| ACT541                                                                                                  | tplH<br>tpHL                         | 5†       | 2.1           | 7.5                           | 2.1    | 8.2          | ns    |  |  |
| Enable to Output                                                                                        | t <sub>PZL</sub><br>t <sub>PZH</sub> | 5        | 3.5           | 12.2                          | 3.4    | 13.4         | ns    |  |  |
| Disable to Output                                                                                       | telz<br>tehz                         | 5        | 3.5           | 12.2                          | 3.4    | 13.4         | ns    |  |  |
| Power Dissipation Capacitance<br>ACT540<br>ACT541                                                       | Сро§                                 | <u>–</u> |               | Тур.<br>Тур.                  |        | Гур.<br>Гур. | pF    |  |  |
| Min. (Valley) V <sub>OH</sub><br>During Switching of Other Outputs<br>(Output Under Test Not Switching) | V <sub>онv</sub><br>See<br>Fig. 1    | 5        |               | 4 Typ. @ 25°C                 |        |              | v     |  |  |
| Max. (Peak) VoL<br>During Switching of Other Outputs<br>(Output Under Test Not Switching)               | V <sub>OLP</sub><br>See<br>Fig. 1    | 5        | 1 Typ. @ 25°C |                               | v      |              |       |  |  |
| Input Capacitance                                                                                       | Ci                                   | _        | -             | 10                            |        | 10           | рF    |  |  |
| 3-State Output Capacitance                                                                              | Co                                   |          |               | 15                            | _      | 15           | pF    |  |  |

\*3.3 V: min. is @ 3.6 V max. is @ 3 V


 $\label{eq:cp} \ \, \mbox{SC}_{PD} \ \, \mbox{is used to determine the dynamic power consumption, per channel.} \\ \ \, \mbox{For AC series, } P_D = V_{CC}^2 \ \, f_i \ \, (C_{PD} + C_L) \\ \ \, \mbox{For ACT series, } P_D = V_{CC}^2 \ \, f_i \ \, (C_{PD} + C_L) + V_{CC} \ \, \Delta I_{CC} \ \, \mbox{where} \qquad f_i = \ \, \mbox{input free} \\ \ \, \mbox{G}_i = 0 \ \, \mbox{input free} \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, f_i \ \, \mbox{(} C_{PD} + C_L) + V_{CC} \ \, \Delta I_{CC} \ \, \mbox{where} \qquad f_i = \ \, \mbox{input free} \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, f_i \ \, \mbox{(} C_{PD} + C_L) + V_{CC} \ \, \Delta I_{CC} \ \, \mbox{where} \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \, \mbox{for ACT series, } P_D = V_{CC}^2 \ \ \ \ \ \ \ \ \ \ \$ 

†5 V: min. is @ 5.5 V max. is @ 4.5 V

f<sub>i</sub> = input frequency  $C_L =$  output load capacitance  $V_{cc} =$  supply voltage.

# CD54/74AC540, CD54/74AC541 CD54/74ACT540, CD54/74ACT541

PARAMETER MEASUREMENT INFORMATION



| Fig 3      | Propagation | detav | times   | and | test | circuit |
|------------|-------------|-------|---------|-----|------|---------|
| - rig. 5 - | riopaganon  | Uciay | 1111100 | anu | 1031 | uncun.  |

|                              | CD54/74AC           | CD54/74ACT          |
|------------------------------|---------------------|---------------------|
| Input Level                  | Vcc                 | 3 V                 |
| Input Switching Voltage, Vs  | 0.5 V <sub>cc</sub> | 1.5 V               |
| Output Switching Voltage, Vs | 0.5 V <sub>cc</sub> | 0.5 V <sub>cc</sub> |



# PACKAGE OPTION ADDENDUM

9-Oct-2007

### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|-----------------------------|
| CD54AC541F3A     | ACTIVE                | CDIP            | J                  | 20   | 1              | TBD                       | A42 SNPB         | N / A for Pkg Type          |
| CD54ACT540F3A    | ACTIVE                | CDIP            | J                  | 20   | 1              | TBD                       | A42 SNPB         | N / A for Pkg Type          |
| CD54ACT541F3A    | ACTIVE                | CDIP            | J                  | 20   | 1              | TBD                       | A42 SNPB         | N / A for Pkg Type          |
| CD74AC540M       | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC540ME4     | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC540MG4     | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC541E       | ACTIVE                | PDIP            | Ν                  | 20   | 20             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type          |
| CD74AC541EE4     | ACTIVE                | PDIP            | Ν                  | 20   | 20             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type          |
| CD74AC541M       | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC541M96     | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC541M96E4   | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC541M96G4   | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC541ME4     | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |
| CD74AC541MG4     | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |
| CD74AC541SM      | OBSOLETE              | SSOP            | DB                 | 20   |                | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74AC541SM96    | ACTIVE                | SSOP            | DB                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |
| CD74AC541SM96E4  | ACTIVE                | SSOP            | DB                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |
| CD74AC541SM96G4  | ACTIVE                | SSOP            | DB                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |
| CD74ACT540E      | ACTIVE                | PDIP            | Ν                  | 20   | 20             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type          |
| CD74ACT540EE4    | ACTIVE                | PDIP            | Ν                  | 20   | 20             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type          |
| CD74ACT540M      | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |
| CD74ACT540M96    | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74ACT540M96E4  | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |
| CD74ACT540M96G4  | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74ACT540ME4    | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM          |
| CD74ACT540MG4    | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIN          |



# PACKAGE OPTION ADDENDUM

9-Oct-2007

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan <sup>(2)</sup>    | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------|
| CD74ACT541E      | ACTIVE                | PDIP            | Ν                  | 20   | 20             | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type           |
| CD74ACT541EE4    | ACTIVE                | PDIP            | Ν                  | 20   | 20             | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type           |
| CD74ACT541M      | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541M96    | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541M96E4  | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541M96G4  | ACTIVE                | SOIC            | DW                 | 20   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541ME4    | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541MG4    | ACTIVE                | SOIC            | DW                 | 20   | 25             | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541SM     | OBSOLETE              | SSOP            | DB                 | 20   |                | TBD                        | Call TI          | Call TI                      |
| CD74ACT541SM96   | ACTIVE                | SSOP            | DB                 | 20   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541SM96E4 | ACTIVE                | SSOP            | DB                 | 20   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD74ACT541SM96G4 | ACTIVE                | SSOP            | DB                 | 20   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

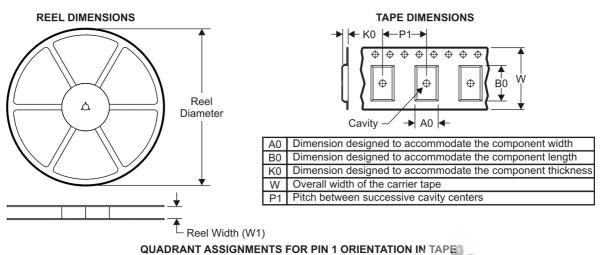
**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

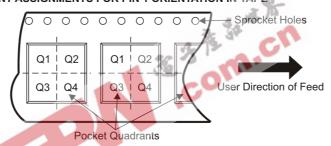
**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



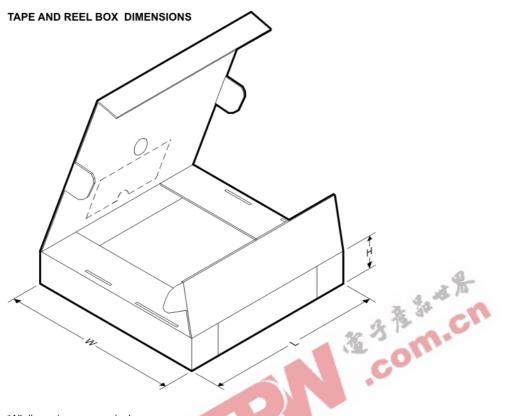

# PACKAGE MATERIALS INFORMATION

11-Mar-2008

### TAPE AND REEL INFORMATION






| *All dimensions are nominal |                 |                    |    |      |                          |                          |         |         |         |            |           |                |
|-----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|---------|---------|---------|------------|-----------|----------------|
| Device                      | Package<br>Type | Package<br>Drawing |    |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadra |
| CD74AC541M96                | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8    | 13.0    | 2.7     | 12.0       | 24.0      | Q1             |
| CD74AC541SM96               | SSOP            | DB                 | 20 | 2000 | 330.0                    | 16.4                     | 8.2     | 7.5     | 2.5     | 12.0       | 16.0      | Q1             |
| CD74ACT540M96               | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8    | 13.0    | 2.7     | 12.0       | 24.0      | Q1             |
| CD74ACT541M96               | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8    | 13.0    | 2.7     | 12.0       | 24.0      | Q1             |
| CD74ACT541SM96              | SSOP            | DB                 | 20 | 2000 | 330.0                    | 16.4                     | 8.2     | 7.5     | 2.5     | 12.0       | 16.0      | Q1             |

Pack Materials-Page 1



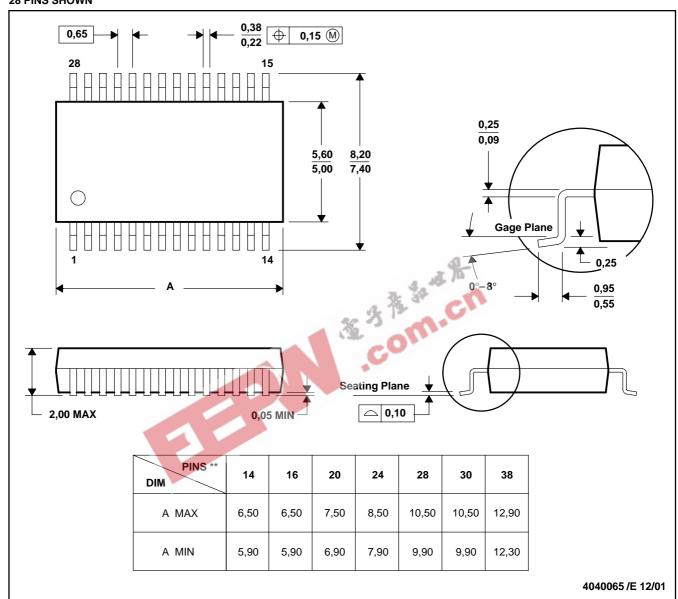
## PACKAGE MATERIALS INFORMATION

11-Mar-2008



| *All dimensions are nomi | nal |
|--------------------------|-----|
|--------------------------|-----|

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74AC541M96   | SOIC         | DW              | 20   | 2000 | 346.0       | 346.0      | 41.0        |
| CD74AC541SM96  | SSOP         | DB              | 20   | 2000 | 346.0       | 346.0      | 33.0        |
| CD74ACT540M96  | SOIC         | DW              | 20   | 2000 | 346.0       | 346.0      | 41.0        |
| CD74ACT541M96  | SOIC         | DW              | 20   | 2000 | 346.0       | 346.0      | 41.0        |
| CD74ACT541SM96 | SSOP         | DB              | 20   | 2000 | 346.0       | 346.0      | 33.0        |


### **MECHANICAL DATA**

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

### PLASTIC SMALL-OUTLINE

28 PINS SHOWN

DB (R-PDSO-G\*\*)



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

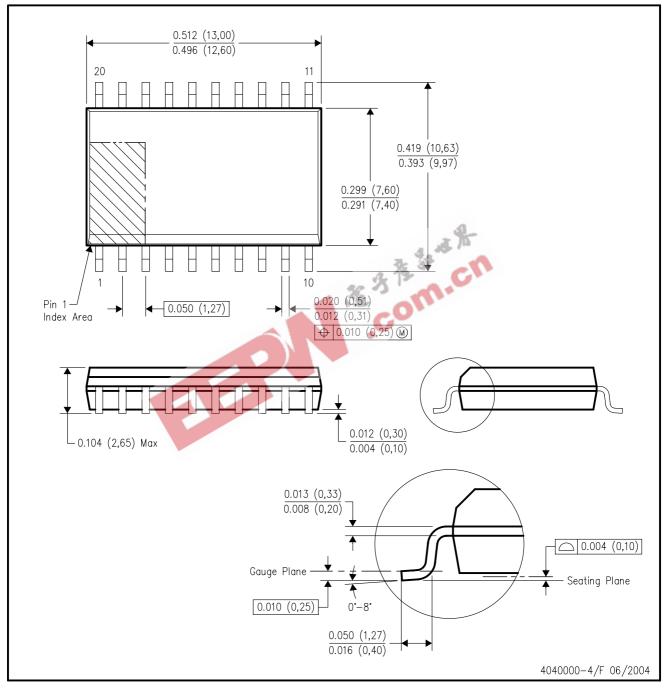
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150



### J (R-GDIP-T\*\*) 14 LEADS SHOWN

### CERAMIC DUAL IN-LINE PACKAGE


PINS \*\* 14 16 18 20 DIM 0.300 0.300 0.300 0.300 В А (7,62) (7,62) (7,62) (7,62) BSC BSC BSC BSC 8 14 0.785 1.060 .840 0.960 B MAX (19,94)(21, 34)(24, 38)(26, 92)B MIN С 0.300 0.300 0.310 0.300 C MAX (7, 62)(7,62) (7, 62)(7, 87)C MIN 7 0.245 0.245 0.220 0.245 0.065 (1,65) 0.045 (1,14) (6, 22)(6, 22)(5, 59)(6, 22)0.060 (1,52) - 0.005 (0,13) MIN Α -0.015 (0,38) 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.026 (0,66) 0.014 (0,36) 0°-15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040083/F 03/03

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DW (R-PDSO-G20)

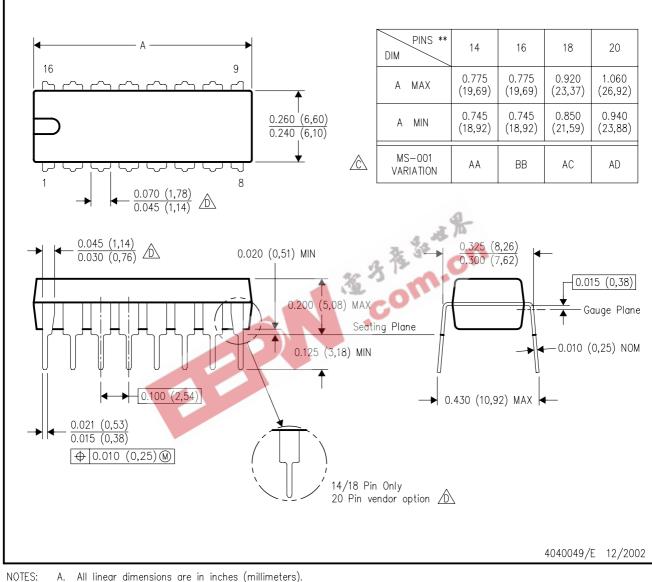
PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-013 variation AC.





PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.

- $\triangle$  Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications       |
|-----------------------------|------------------------|--------------------|
| Amplifiers                  | amplifier.ti.com       | Audio              |
| Data Converters             | dataconverter.ti.com   | Automotive         |
| DSP                         | dsp.ti.com             | Broadband          |
| Clocks and Timers           | www.ti.com/clocks      | Digital Control    |
| Interface                   | interface.ti.com       | Medical            |
| Logic                       | logic.ti.com           | Military           |
| Power Mgmt                  | power.ti.com           | Optical Networking |
| Microcontrollers            | microcontroller.ti.com | Security           |
| RFID                        | www.ti-rfid.com        | Telephony          |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        | Video & Imaging    |
| -                           |                        | Wireless           |

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/pticalnetwork www.ti.com/security www.ti.com/security www.ti.com/video www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated