ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER ### GENERAL DESCRIPTION The ICS843204I is a 4 output LVPECL Synthesizer optimized to generate Gigabit Ethernet and SONET reference clock frequencies and is a member of the HiPerClocks™ family of high performance clock solutions from ICS. Using a 19.44MHz and 25MHz, 18pF parallel resonant crystal, 155.52MHz and 156.25MHz frequencies can be generated. The ICS843204I uses ICS' FemtoClock™ low phase noise VCO technology and can achieve 1ps or lower typical RMS phase jitter. The ICS843204I is packaged in a 48-pin TSSOP package. #### **F**EATURES - Four 3.3V LVPECL outputs - Selectable crystal oscillator interface or LVCMOS/LVTTL single-ended input - Supports the following output frequencies: 155.52MHz and 156.25MHz - VCO range: 560MHz 680MHz - RMS phase jitter @ 155.52MHz, using a 19.44MHz crystal (12kHz - 13MHz): 0.86ps (typical) - RMS phase jitter @ 156.25MHz, using a 19.44MHz crystal (1.875MHz - 20MHz): 0.52ps (typical) - Full 3.3V supply mode - -40°C to 85°C ambient operating temperature - Available in both standard and lead-free RoHS compliant packages The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice. # ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER #### TABLE 1. PIN DESCRIPTIONS | Number | Name | Ty | /ре | Description | |--|------------------------|--------|----------|---| | 1, 2 | nQA1, QA1 | Output | | Differential output pair. LVPECL interface levels. | | 3, 4 | nQA0, QA0 | Output | | Differential output pair. LVPECL interface levels. | | 5, 10, 11, 12,
13, 20, 25, 26,
27, 28, 29, 37,
38, 44 | nc | Unused | | No connect. | | 6 | V _{CCO_A} | Power | | Output supply pin for Bank A outputs. | | 7 | SELA1 | Input | Pulldown | Select pin. When HIGH, selects QA1/nQA1 at 155.52MHz. When LOW, selects QA1/nQA1 at 156.25MHz. LVCMOS/LVTTL interface levels. | | 8 | SELA0 | Input | Pulldown | Select pin. When HIGH, selects QA0/nQA0 at 155.52MHz. When LOW, selects QA1/nQA1 at 156.25MHz. LVCMOS/LVTTL interface levels. | | 9 | PLL_BYPASS_A | Input | Pullup | When LOW, PLL is bypassed. When HIGH, PLL output is active. | | 14, 15 | XTAL_IN1,
XTAL_OUT1 | Input | | Parallel resonant crystal interface. XTAL_OUT1 is the output, XTAL_IN1 is the input. | | 16, 47 | CLK1, CLK0 | Input | Pulldown | LVCMOS/LVTTL clock inputs. | | 21, 22 | QB0, nQB0 | Ouput | | Differential output pair. LVPECL interface levels. | | 17 | IN_SEL_B | Input | Pullup | Select pin. When HIGH, selects XTAL1 inputs. When LOW, selects CLK1 input. LVCMOS/LVTTL interface levels. | | 18 | PLL_BYPASS_B | Input | Pullup | When LOW, PLL is bypassed. When HIGH, PLL output is active. | | 19 | V _{CCO_B} | Power | | Output supply pin for Bank B outputs. | | 23, 24 | QB1, nQB1 | Ouput | | Differential output pair. LVPECL interface levels. | | 31 | SELB1 | Input | Pullup | Select pin. When HIGH, selects QB1/nQB1 at 155.52MHz. When LOW, selects QB1/nQB1 at 156.25MHz. LVCMOS/LVTTL interface levels. | | 30, 39 | V _{CCA} | Power | | Analog supply pins. | | 32, 40 | V _{cc} | Power | | Core supply pins. | | 33 | OEB1 | Input | Pullup | Output enable pin. QB1/nQB1 outputs are enable. LVCMOS/LVTTL interface levels. | | 34 | OEB0 | Input | Pullup | Output enable pin. QB0/nQB0 outputs are enabled. LVCMOS/LVTTL interface levels. | | 35, 43 | $V_{\sf EE}$ | Power | | Negative supply pins. | | 36 | SELB0 | Input | Pullup | Select pin. When HIGH, selects QB0/nQB0 at 155.52MHz. When LOW, selects QB0/nQB0 at 156.25MHz. LVCMOS/LVTTL interface levels. | | 41 | OEA1 | Input | Pullup | Output enable pin. QA1/nQA1 outpus are enabled. LVCMOS/LVTTL interface levels. | | 42 | OEA0 | Input | Pullup | Output enable pin. QA0/nQA0 outputs are enabled. LVCMOS/LVTTL interface levels. | | 45, 46 | XTAL_OUT0,
XTAL_IN0 | Input | | Parallel resonant crystal interface. XTAL_OUT0 is the output, XTAL_IN0 is the input. | | 48 | IN_SEL_A | Input | Pullup | Select pin. When HIGH, selects XTAL0 inputs. When LOW, selects CLK0 input. LVCMOS/LVTTL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. #### TABLE 2. PIN CHARACTERISTICS | IABLE III | TOTALIAGIEIIIGIIGG | | | | | | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | # ICS843204I # FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{CC} 4.6V Inputs, V_1 -0.5V to V_{cc} + 0.5V Outputs, $I_{\rm O}$ Continuous Current 50mA Surge Current 100mA Package Thermal Impedance, θ_{IA} 58.3°C/W (0 Ifpm) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 3A. Power Supply DC Characteristics, $V_{\text{CC}} = V_{\text{CCO}_A} = V_{\text{CCO}_B} = 3.3 \text{V} \pm 10\%$, TA = -40°C to 85°C | Symbol | Parameter | Test Conditions | | Minimum | Typical | Maximum | Units | |---------------------|-----------------------|-----------------|-----|---------|---------|---------|-------| | V _{cc} | Core Supply Voltage | | 36. | 2.97 | 3.3 | 3.63 | V | | V _{CCA} | Analog Supply Voltage | | 25 | 2.97 | 3.3 | 3.63 | V | | V _{CCO_A,} | Output Supply Voltage | | COL | 2.97 | 3.3 | 3.63 | V | | I _{EE} | Power Supply Current | | | | 125 | | mA | | I _{cc} | Core Supply Current | | | | 92 | | mA | | I _{CCA} | Analog Supply Current | | | | 14 | | mA | | I _{CCO_A,} | Output Supply Current | | | | 16 | | mA | ### Table 3B. LVCMOS / LVTTL DC Characteristics, $V_{CC} = V_{CCO~A} = V_{CCO~B} = 3.3V \pm 10\%$, TA = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------|--|-------------------------------|---------|---------|-----------------------|-------| | V _{IH} | Input High Vol | tage | | 2 | | V _{cc} + 0.3 | V | | V _{IL} | Input
Low Voltage | | | -0.3 | | 0.8 | V | | | | CLK0, CLK1,
SELA0, SELA1 | $V_{CC} = V_{IN} = 3.63V$ | | | 150 | μΑ | | I _{IH} | Input
High Current | PLL_BYPASS_A, PLL_BYPASS_B, IN_SEL_A, IN_SEL_B, SELB1, SELB0, OEB0, OEB1, OEA0, OEA1 | $V_{CC} = V_{IN} = 3.63V$ | | | 5 | μА | | | | CLK0, CLK1,
SELA0, SELA1 | $V_{CC} = 3.63V, V_{IN} = 0V$ | -5 | | | μΑ | | I _{IL} | Input
Low Current | PLL_BYPASS_A, PLL_BYPASS_B, IN_SEL_A, IN_SEL_B, SELB1, SELB0, OEB0, OEB1, OEA0, OEA1 | $V_{CC} = 3.63V, V_{IN} = 0V$ | -150 | | | μА | # ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL Frequency Synthesizer $\textbf{TABLE 3C. LVPECL DC CHARACTERISTICS, } V_{\text{CC}} = V_{\text{CCO}_A} = V_{\text{CCO}_B} = 3.3 \text{V} \pm 10\%, \text{TA} = -40 ^{\circ}\text{C to } 85 ^{\circ}\text{C} = 10.0 ^{\circ}\text{C} + 10.0 ^{\circ}\text{C} = 10$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|------------------------|---------|------------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{cco} - 1.4 | | V _{cco} - 0.9 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{cco} - 2.0 | | V _{cco} - 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 1.0 | V | NOTE 1: Outputs terminated with 50 $\!\Omega$ to ${\rm V_{cco}}$ - 2V. #### TABLE 4. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|---------|---------|---------|-------| | Mode of Oscillation | Fundamental | | | -
ul | | | Frequency | | 19.44 | | 25 | MHz | | Equivalent Series Resistance (ESR) | | 点用 | | 50 | Ω | | Shunt Capacitance | * 3 | -10 | | 7 | pF | | Drive Level | 20 3 12 | 4.0 | | 1 | mW | NOTE: Characterized using an 18pF parallel resonant crystal. Table 5. AC Characteristics, $V_{CC} = V_{CCO_A} = V_{CCO_B} = 3.3V \pm 10\%$, TA = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|----------------------------|-------------------------------|---------|---------|---------|-------| | f _{OUT} | Output Frequency | SELB0 = 1; OEB0 = 1 | | 155.52 | | MHz | | | | SELA0 = 0; OEA0 = 1 | | 156.25 | | MHz | | tsk(o) | Output Skew; NOTE 1, 2 | | | TBD | | ps | | 4::+(<i>C</i> X) | RMS Phase Jitter (Random); | 155.52MHz, (12kHz - 1.3MHz) | | 0.86 | | ps | | <i>t</i> jit(Ø) | NOTE 3 | 156.25MHz, (1.875MHz - 20MHz) | | 0.52 | | ps | | t _R / t _F | Output Rise/Fall Time | 20% to 80% | | 475 | | ps | | odc | Output Duty Cycle | | | 50 | | % | NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at $V_{\rm CCO}/2$. NOTE 2: This parameter is defined in accordance with JEDEC Standard 65. NOTE 3: See Phase Noise plot. # ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER # PARAMETER MEASUREMENT INFORMATION #### 3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT RMS Jitter = Area Under the Masked Phase Noise Plot #### **RMS PHASE JITTER** #### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD #### **OUTPUT RISE/FALL TIME** ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL Frequency Synthesizer ### APPLICATION INFORMATION #### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS8432041 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $\rm V_{\rm CC}, \, \rm V_{\rm CCA}, \, and$ $V_{cco_{-x}}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each V_{CCA} . #### CRYSTAL INPUT INTERFACE The ICS843204I has been characterized with 18pF Figure 2 below were determined using an 18pF parallel parallel resonant crystals. The capacitor values shown in resonant crystal and were chosen to minimize the ppm error. # ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER #### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS #### INPUTS: #### **CRYSTAL INPUT:** For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground. #### **CLK INPUT:** For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground. #### LVCMOS CONTROL PINS: All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **O**UTPUTS: #### LVPECL OUTPUT All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. #### TERMINATION FOR 3.3V LVPECL OUTPUT The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These $Z_0 = 50\Omega$ $Z_0 = 50\Omega$ FIN V_{CC} - 2V FIGURE 3A. LVPECL OUTPUT TERMINATION 50Ω ≶ outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 3A and 3B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. FIGURE 3B. LVPECL OUTPUT TERMINATION ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER # POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS843002. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS843002 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 10\% = 3.63V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.63V * 125mA = 453.75mW - Power (outputs)_{MAX} = 30mW/Loaded Output pair If all outputs are loaded, the total power is 4 * 30mW = 120mW Total Power $_{\text{Max}}$ (3.63V, with all outputs switching) = 453.75mW + 120mW = 573.75mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS TM devices is 125°C. The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_total + T_A$ Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 52.3°C/W per Table 7 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: $85^{\circ}\text{C} + 0.574\text{W} * 52.3^{\circ}\text{C/W} = 115^{\circ}\text{C}$. This is below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). #### Table 7. Thermal Resistance $\theta_{,ia}$ for 48-pin TSSOP, Forced Convection # θ_{IA} by Velocity (Linear Feet per Minute) 0200500Single-Layer PCB, JEDEC Standard Test Boards82.6°C/W70.3°C/W63.7°C/WMulti-Layer PCB, JEDEC Standard Test Boards58.3°C/W52.3°C/W49.9°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER #### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 4. To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V $_{CCO}$ - 2V. • For logic high, $$V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$$ $$(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$$ • For logic low, $$V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$$ $$(V_{CCO,MAX} - V_{OL,MAX}) = 1.7V$$ Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$Pd_{-}H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$ $$Pd_{L} = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER # RELIABILITY INFORMATION # Table 8. $\theta_{\text{JA}} \text{vs. Air Flow Table for 48 Lead TSSOP}$ # θ_{AA} by Velocity (Linear Feet per Minute) 0200500Single-Layer PCB, JEDEC Standard Test Boards82.6°C/W70.3°C/W63.7°C/WMulti-Layer PCB, JEDEC Standard Test Boards58.3°C/W52.3°C/W49.9°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS843204I is: 4090 # ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER #### PACKAGE OUTLINE - G SUFFIX FOR 48 LEAD TSSOP TABLE 9. PACKAGE DIMENSIONS | SYMBOL | Millin | neters | | | | |---------|---------|---------|--|--|--| | STWIBOL | Minimum | Maximum | | | | | N | 48 | | | | | | A | | 1.20 | | | | | A1 | 0.05 | 0.15 | | | | | A2 | 0.80 | 1.05 | | | | | b | 0.17 | 0.27 | | | | | С | 0.09 | 0.20 | | | | | D | 12.40 | 12.60 | | | | | Е | 8.10 E | BASIC | | | | | E1 | 6.00 | 6.20 | | | | | е | 0.50 E | BASIC | | | | | L | 0.45 | 0.75 | | | | | α | 0° | 8° | | | | | aaa | 0.10 | | | | | Reference Document: JEDEC Publication 95, MO-153 ICS843204I FEMTOCLOCKSTM CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER TABLE 10. ORDERING INFORMATION | Part/Order Number | Marking | Marking Package Shipping Packaging | | Temperature | |-------------------|--------------|------------------------------------|------------------|---------------| | ICS843204AGI | ICS843204AGI | 48 Lead TSSOP | tube | -40°C to 85°C | | ICS843204AGIT | ICS843204AGI | 48 Lead TSSOP | 1000 tape & reel | -40°C to 85°C | | ICS843204AGILF | TBD | 48 Lead "Lead-Free" TSSOP | tube | -40°C to 85°C | | ICS843204AGILFT | TBD | 48 Lead "Lead-Free" TSSOP | 1000 tape & reel | -40°C to 85°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. The aforementioned trademarks, HiPerClockS and FemtoClocks are trademarks of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.