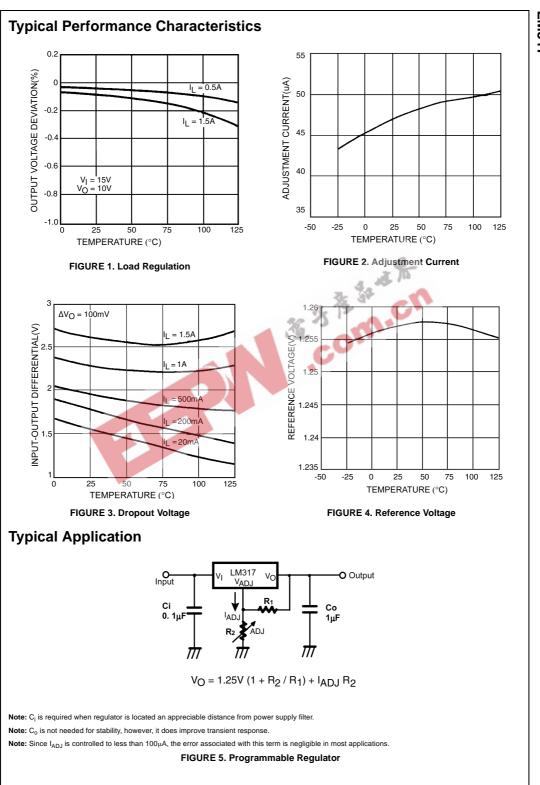


~
~
က
5

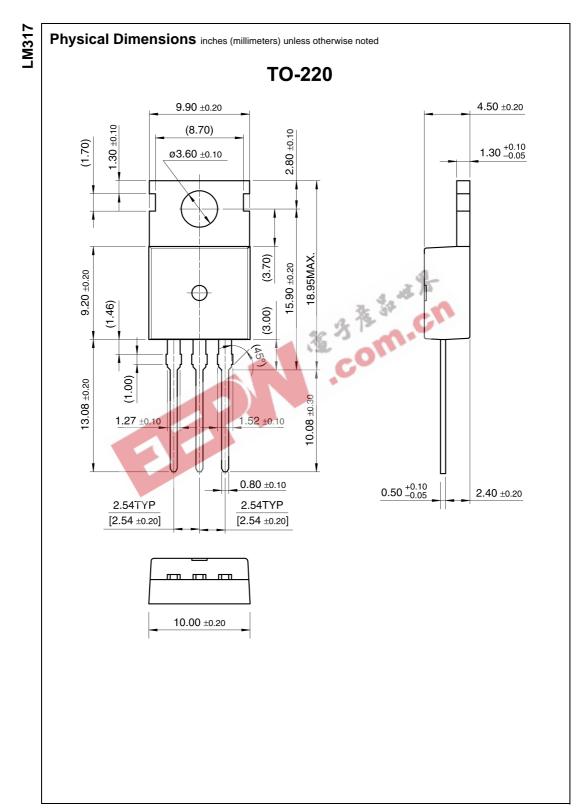
Absolute Maximum Ratings

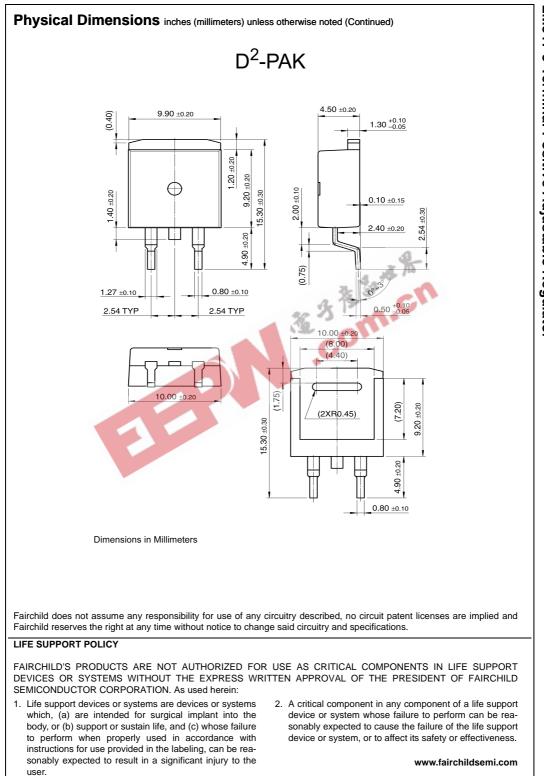
Parameter	Symbol	Value	Unit	
Input-Output Voltage Differential	V _I - V _O	40	V	
Lead Temperature	T _{LEAD}	230	°C	
Power Dissipation	PD	Internally limited	W	
Operating Junction Temperature Range	Тj	0 ~ +125	°C	
Storage Temperature Range	T _{STG}	-65 ~ +125	°C	
Temperature Coefficient of Output Voltage	$\Delta V_O / \Delta T$	±0.02	% / °C	

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.


Electrical Characteristic

(V_I - V_O = 5V, I_O = 0.5A, 0°C \leq T_J \leq + 125°C, I_{MAX} = 1.5A, P_{DMAX} = 20W, unless otherwise specified)


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Line Regulation (Note 2)	Rline	$T_{A} = +25^{\circ}C$ $3V \le V_{L} - V_{O} \le 40V$	_	0.01	0.04	% / V
		$\frac{3V \leq V_1 - V_0 \leq 40V}{3V \leq V_1 - V_0 \leq 40V}$	-	0.02	0.07	% / V
Load Regulation (Note 2)	Rload		2	18.0 0.4	25.0 0.5	mV% / V _O
	-1	$10 \text{mA} \le I_0 \le I_{\text{MAX}}$ V ₀ < 5V V ₀ ≥ 5V	-	40.0 0.8	70.0 1.5	mV% / V _O
Adjustable Pin Current	I _{ADJ}	-	-	46.0	100	μA
Adjustable Pin Current Change	ΔI _{ADJ}	$\frac{3V \le V_1 - V_0 \le 40V}{10mA \le I_0 \le I_{MAX} P_0 \le P_{MAX}}$	-	2.0	5.0	μΑ
Reference Voltage	V _{REF}	$\begin{split} & \exists V \leq V_{IN} \cdot V_O \leq 40V \\ & 10mA \leq I_O \leq I_{MAX} \\ & P_D \leq P_{MAX} \end{split}$	1.20	1.25	1.30	V
Temperature Stability	STT	-	-	0.7	-	%/V _O
Minimum Load Current to Maintain Regulation	I _{L(MIN)}	$V_{1} - V_{0} = 40V$	-	3.5	12.0	mA
Maximum Output Current	I _{O(MAX)}	$ \begin{aligned} & V_{I} \cdot V_{O} \leq 15V, P_{D} \leq P_{MAX} \\ & V_{I} \cdot V_{O} \leq 40V, P_{D} \leq P_{MAX} \\ & T_{A} = 25^\circ C \end{aligned} $	1.0	2.2 0.3	-	A
RMS Noise,% of V _{OUT}	eN	$T_A = +25^{\circ}C, \ 10Hz \leq f \leq 10KHz$	-	0.003	0.01	%/V ₀
Ripple Rejection	RR	$V_O = 10V$, f = 120Hz without C_{ADJ} $C_{ADJ} = 10\mu F$ (Note 3)	66.0	60.0 75.0	-	dB
Long-Term Stability, T _J = T _{HIGH}	ST	$T_A = +25^{\circ}C$ for end point measurements, 1000HR	-	0.3	1.0	%
Thermal Resistance Junction to Case	$R_{\theta JC}$	-	-	5.0	-	°C / W


Note 2: Load and line regulation are specified at constant junction temperature. Change in V_D due to heating effects must be taken into account separately. Pulse testing with low duty is used. (P_{MAX} = 20S)

Note 3: CADJ, when used, is connected between the adjustment pin and ground.

LM317

