SCBS247G - AUGUST 1992 - REVISED JULY 1998

- **Members of the Texas Instruments** Widebus™ Family
- B-Port Outputs Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art *EPIC-IIB™* BiCMOS Design **Significantly Reduces Power Dissipation**
- **UBT**™ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
- Latch-Up Performance Exceeds 500 mA Per **JESD 17**
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$
- High-Impedance State During Power Up and Power Down
- Flow-Through Architecture Optimizes PCB
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs.

SN54ABT162601 . . . WD PACKAGE SN74ABT162601...DGG OR DL PACKAGE (TOP VIEW)

For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. Output-enable OEAB is active-low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, CLKBA, and CLKENBA.

The B-port outputs, which are designed to source or sink up to 12 mA, include equivalent $25-\Omega$ series resistors to reduce overshoot and undershoot.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

SCBS247G - AUGUST 1992 - REVISED JULY 1998

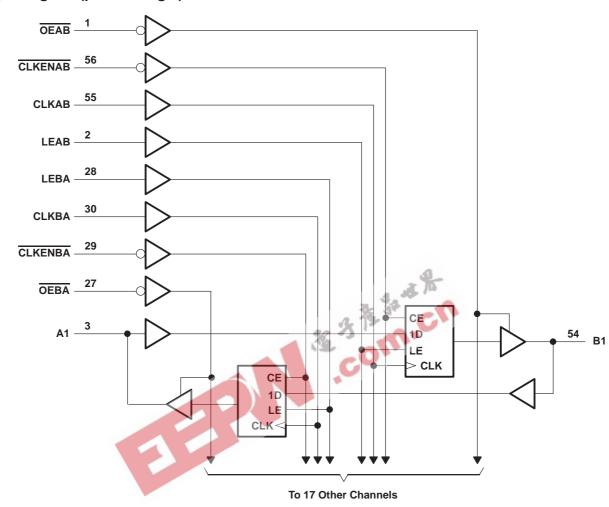
description (continued)

The SN54ABT162601 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT162601 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE†

	II	NPUTS			OUTPUT
CLKENAB	OEAB	LEAB	CLKAB	Α	В
Х	Н	Χ	Х	Χ	Z
Х	L	Н	X	L	L
Х	L	Н	X	Н	Н
Н	L	L	X	Χ	в ₀ ‡
Н	L	L	X	Χ	в ₀ ‡ в ₀ ‡
L	L	L	\uparrow	L	L
L	L	L	\uparrow	Н	н
L	L	L	L	Χ	в ₀ ‡
L	L	L	Н	Х	B ₀ ‡ B ₀ §

[†] A-to-B data flow is shown: B-to-A flow is similar but uses OEBA LEBA, CLKBA, and CLKENBA.



[‡] Output level before the indicated steady-state input conditions were established

[§] Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

SCBS247G - AUGUST 1992 - REVISED JULY 1998

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT162601 (A port)	96 mA
SN74ABT162601 (A port)	128 mA
B port	30 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN54ABT162601, SN74ABT162601 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS247G - AUGUST 1992 - REVISED JULY 1998

recommended operating conditions (see Note 3)

	s		SN54ABT162601		SN74ABT162601		UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage				4.5	5.5	V
VIH	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage	0	Vcc	0	Vcc	V	
lau	High level output ourrent	A port		-24		-32	mA
ЮН	High-level output current	B port		-12		-12	IIIA
la	Low lovel output ourrent	A port		48		64	mA
lOL	Low-level output current	B port		12		12	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate				200		μs/V
TA	Operating free-air temperature			125	-40	85	°C

NOTE 3: All unused inputs of the devices must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application note, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS247G - AUGUST 1992 - REVISED JULY 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

V _{CC} = 4.5 V,	PARAMETER		TEST CONDITIONS		T	A = 25°C	;	SN54ABT162601		SN74ABT162601		UNIT
$V_{\text{CH}} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FAI	MIVIETER			MIN	TYP†	MAX	MIN	MAX	MIN	MAX	ONIT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A nort	$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		
VOH B port POC = 4.5 V,		A port	V00 - 4 5 V	I _{OH} = -24 mA	2			2				
Note	\/a		VCC = 4.5 V	I _{OH} = -32 mA	2*					2		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VOH		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -1 \text{ mA}$	3.35			3.3		3.35		V
V _{CC} = 4.5 V V _{CC} = 4.		R port	$V_{CC} = 5 V$,	$I_{OH} = -1 \text{ mA}$	3.85			3.8		3.85		
VOL A port VCC = 4.5 V IQL = 48 mA 0.555 0.555 0.555 V B port VCC = 4.5 V IQL = 64 mA 0.555 0.555 V Whys		B port	V00 - 45 V	$I_{OH} = -3 \text{ mA}$	3.1			3		3.1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			VCC = 4.5 V	$I_{OH} = -12 \text{ mA}$	2.6					2.6		
Vol. B port Vol. E Vol		A port	V00 - 45 V	I _{OL} = 48 mA			0.55		0.55			
Vhys	VOL	A port	VCC = 4.5 V	$I_{OL} = 64 \text{ mA}$			0.55*				0.55	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B port	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 12 \text{ mA}$			0.8		0.8		0.8	
$ \begin{array}{ c c c c c c c c } \hline I_{IJ} & inputs & VCC = 0 to 5.5 \ V, \ V_{I} = VCC \ or \ GND & & & & & & & & & & & & & & & & & & &$	V _{hys}					100		- %				mV
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ļ.,	1	$V_{CC} = 0$ to 5.5 V, V_I	: 0 to 5.5 V, V _I = V _{CC} or GND		. 3	£ 1	cn	±1		±1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	"	A or B ports		13	23	±20	±20		±20	μΑ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lozpu	J		OE = X		C	±50		±50**		±50	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IOZPE)		OE = X			±50		±50**		±50	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lozh‡	:					10		10		10	μΑ
$ \begin{array}{ c c c c c c c c c } \hline I_{CEX} & V_{CC} = 5.5 \text{ V}, \\ V_{O} = 5.5 \text{ V} & Outputs high} & 50 & 50 & 50 & 50 & \mu A \\ \hline I_{O} \\ \hline \\ \hline I_{O} \\ \hline \\ $	l _{OZL} ‡						-10		-10		-10	μΑ
$ \begin{array}{ c c c c c c c c c } \hline ICEX & V_O = 5.5 \ V & Outputs \ Ingn & & & & & & & & & & & & & & & & & & $	l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100*				±100	μΑ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ICEX			Outputs high			50		50		50	μΑ
	1.8	A port	V00 = 5.5.V	Vo = 2.5.V	-50	-100	-180	-50	-180	-50	-180	m^
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	B port	v () () = 5.5 v,	v () = 2.5 v	-25	-55	-100	-25	-100	-25	-100	111/4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			VCC = 5.5 V.	Outputs high			3		3		3	
$\Delta I_{CC} \parallel \qquad \qquad V_{CC} = 5.5 \text{ V, One input at } 3.4 \text{ V,} $ $C_{i} C_{i} C_{i} V_{I} = 2.5 \text{ V or } 0.5 \text{ V} $ $C_{i} C_{i} C_$	ICC	A or B ports	orts $I_O = 0$,	Outputs low			36		36		36	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _I = V _{CC} or GND	Outputs disabled			3		3		3	
C_i inputs $V_i = 2.5 \text{ V or } 0.5 \text{ V}$	ΔI _{CC} ¶						50		50		50	μА
Cia A or B ports V o = 2.5 V or 0.5 V	Ci		V _I = 2.5 V or 0.5 V			3						pF
	Cio	A or B ports	V _O = 2.5 V or 0.5 V			9						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

 $[\]P$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

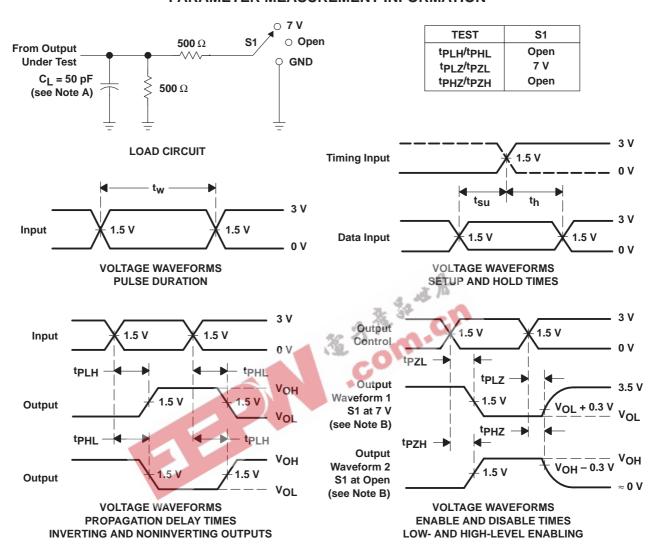
^{**} On products compliant to MIL-PRF-38535, this parameter is not production tested.

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V. ‡ The parameters I_{OZH} and I_{OZL} include the input leakage current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

SN54ABT162601, SN74ABT162601 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS247G - AUGUST 1992 - REVISED JULY 1998

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(see Figure 1)


				SN54ABT	162601	SN74ABT	162601	UNIT
				MIN	MAX	MIN	MAX	UNII
fclock	f _{clock} Clock frequency					0	150	MHz
	Pulse duration	LEAB or LEBA high	2.5		2.5		ns	
ιW	t _W Pulse duration	CLKAB or CLKBA high or low	3.3		3			
		A before CLKAB↑ or B before CLKBA↑	4.8		4.3			
	Setup time		CLK high	2.5		2.5		ns
t _{su}	Setup time	A before LEAB↓ or B before LEBA↓ CLK low		1.2		1		115
		CLKEN before CLK↑	2.7		2.7			
		A after CLKAB↑ or B after CLKBA↑ A after LEAB↓ or B after LEBA↓		0.5		0		ns
th	Hold time			2	·	0.5		
		CLKEN after CLK↑		0.5		0		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 5 V, T _A = 25°C			SN54ABT162601		SN74ABT162601	
	(1141 01)	(0011 01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			150	13L	-0	150		150		MHz
^t PLH	А	В	1.5	2.8	4	1.5	5.1	1.5	4.8	
^t PHL	A	В	2	3.7	5.2	2	6.1	2	5.7	ns
tPLH	В	A	1	2.5	3.6	1	4.5	1	4	ns
^t PHL	ь	A	2	3.3	4.5	2	5.1	2	4.9	115
^t PLH	LEBA	A	2	3.3	4.5	2	5.6	2	5	ns
^t PHL	LEDA	^	2	3.6	4.7	2	5.4	2	5	113
t _{PLH}	LEAB	В	2	3.4	4.8	2	6.1	2	5.6	ns
^t PHL	LEAD	В	2	3.8	5.2	2	6.4	2	5.9	115
^t PLH	CLKBA	А	1.5	3.1	4.7	1.5	5.4	1.5	5.3	ns
^t PHL	CLNDA	A	1.5	3.1	4.3	1.5	5.2	1.5	5	115
^t PLH	CLKAB	В	1.5	3.3	4.7	1.5	6	1.5	5.5	ns
^t PHL	CLNAD	В	1.5	3.5	4.8	1.5	5.8	1.5	5.3	115
^t PZH	OEBA	А	2	3.5	4.6	2	5.5	2	5.1	ns
^t PZL	OEBA	^	2	3.7	4.7	2	5.8	2	5.4	113
^t PZH	OFAR	В	2	3.8	5.3	1.5	6.6	2	6.1	ns
^t PZL	OEAB		2	3.6	5.1	2	6.2	2	5.7	IIS
^t PHZ	OEBA	А	2	3.6	5.4	1.4	6.6	2	6.2	ns
^t PLZ		^	1.5	3.2	4.7	1.5	5.8	1.5	5.4	113
^t PHZ	OEAB	В	2	3.4	4.8	1.4	5.6	2	5.4	ns
^t PLZ			1.5	3.2	4.5	1.5	5.7	1.5	5.2	115

SCBS247G - AUGUST 1992 - REVISED JULY 1998

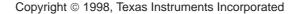
PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{f} \leq$ 2.5 ns. $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE


Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. This publication of information regarding any third party's products or services does not constitute This approval, warranty or endorsement thereof.

