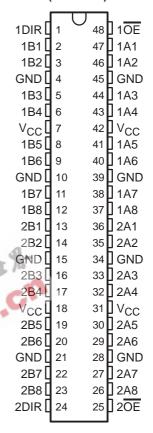
SN54ABT16640, SN74ABT16640 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS107C - APRIL 1992 - REVISED JANUARY 1997


- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABT16640 are inverting 16-bit transceivers designed for asynchronous communication between data buses.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (1DIR and 2DIR) inputs. The output-enable (1OE and 2OE) inputs can be used to disable the device so that the buses are effectively isolated.

SN54ABT16640 . . . WD PACKAGE SN74ABT16640 . . . DGG OR DL PACKAGE (TOP VIEW)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16640 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16640 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each 8-bit section)

INP	UTS	ODEDATION				
OE	DIR	OPERATION				
L	L	B data to A bus				
L	Н	A data to B bus				
Н	Χ	Isolation				

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SN54ABT16640, SN74ABT16640 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS

SCBS107C - APRIL 1992 - REVISED JANUARY 1997

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and

IEC Publication 617-12.

logic symbol† logic diagram (positive logic) 1OE 48 10E G3 1 1DIR 3 EN1 [BA] 3 EN2 [AB] 25 2OE G6 1DIR 24 2DIR 6 EN4 [BA] 6 EN5 [AB] 2 1A1 1B1 1 2 ▽ 2 1B1 1A1 -46 3 1A2 1B2 44 5 1B3 1A3 43 6 1A4 1B4 8 41 1B5 To Seven Other Channels 1A5 40 9 1B6 1A6 38 11 2OE 1A7 1B7 37 12 1A8 1B8 36 13 2B1 2A1 5 ▽ 35 14 2A2 2**B**2 33 16 2A3 2B3 32 17 2A4 2B4 19 30 2A5 2B5 13 2B1 2A6 2B6 2A1 2B7 2A7 26 2B8 2A8 To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V _O	. −0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16640	96 mA
SN74ABT16640	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	89°C/W
DL package	94°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN54ABT16640, SN74ABT16640 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCBS107C - APRIL 1992 - REVISED JANUARY 1997

recommended operating conditions (see Note 3)

			SN54AB1	Г16640	SN74AB1	UNIT	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
V _{IL} Low-level input voltage			0.8		0.8	V	
V _I Input voltage		0	Vcc	0	Vcc	V	
I _{OH} High-level output current			-24		-32	mA	
loL	IOL Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T _A Operating free-air temperature		-55	125	-40	85	°C	

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SN54ABT16640, SN74ABT16640 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCBS107C - APRIL 1992 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		T _A = 25°C		SN54ABT16640		SN74ABT16640		UNIT	
FAR	ANIETER	TEST CON	1201 001121110110		TYP†	MAX	MIN	MAX	MIN MAX		OWN
V_{IK}		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	= 4.5 V, I _{OH} = –3 mA				2.5		2.5		
Vон		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V
۷ОН		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				V
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		
VOL		V _{CC} = 4.5 V	$I_{OL} = 48 \text{ mA}$			0.55		0.55			V
VOL.		VCC = 4.5 V	$I_{OL} = 64 \text{ mA}$			0.55*				0.55	V
V_{hys}					100						mV
l _l	Control inputs	V _{CC} = 5.5 V,	V _I = V _{CC} or GND			±1		±1		±1	μΑ
	A or B ports					±100		±100		±100	
I _{OZH} ‡		$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.7 \text{ V}$			50		50		50	μΑ
I _{OZL} ‡		$V_{CC} = 5.5 \text{ V},$	V _O = 0.5 V			-50	- 4	-50		- 50	μΑ
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100	36-7"			±100	μΑ
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high		2 3	50	C	50		50	μΑ
ΙΟ§		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-5 0	-100	-180	-40	-180	-50	-180	mA
		V _{CC} = 5.5 V,	Outputs high		C	2		2		2	
ICC	A or B ports	$I_O = 0$,	Outputs low			32		32		32	mA
		$V_I = V_{CC}$ or GND	Outputs disabled			2		2		2	
	Data inputs	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1		1.5		1	
$\Delta I_{CC}\P$	Data Inputs	Other inputs at VCC or GND	Outputs disabled			0.05		0.05		0.05	mA
	Control inputs	$V_{CC} = 5.5 \text{ V}$, One in Other inputs at V_{CC}				1.5		1.5		1.5	
Ci	Control inputs	V _I = 2.5 V or 0.5 V			3						pF
C _{io}	A or B ports	V _O = 2.5 V or 0.5 V			8						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

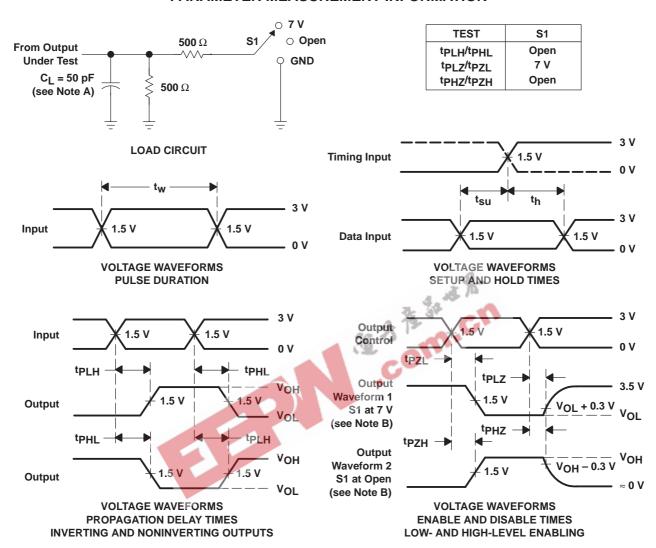
[‡]The parameters I_{OZH} and I_{OZL} include the input leakage current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SN54ABT16640, SN74ABT16640 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS SCBS107C - APRIL 1992 - REVISED JANUARY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN MAX	UNIT	
			MIN	TYP	MAX			
t _{PLH}	A or B	B B or A	0.5	2.5	4.1	0.5	5.2	
t _{PHL}	AUID		0.5	2.8	4	0.5	4.5	ns
^t PZH		A or B	0.5	3.5	5.2	0.5	6.2	ns
t _{PZL}	ŌĒ		0.5	3.9	6	0.5	7.4	115
t _{PHZ}	ŌĒ	A or B	0.5	3.8	6.8	0.5	7.9	ns
t _{PLZ}	OE	AOIB	0.5	3	4.5	0.5	5	115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

					SN7	4ABT16	640			
PARAMETER	FROM (INPUT)	1.3		3 m 00			MIN	MAX	UNIT	
			7 3º	MIN	TYP	MAX				
tpLH	A or B	B or A	PorA	1	2.5	3.4	1	4.3	ns	
t _{PHL}	AOIB		1.1	2.8	3.6	1.1	3.9	115		
^t PZH	OE	A or	A or B	1.2	3.5	4.5	1.2	5.5	ns	
tPZL	OE		AOLB	1.5	3.9	5	1.5	6.3	110	
^t PHZ	OF.			A or B	1.8	3.8	4.8	1.8	6.3	ns
t _{PLZ}	ŌĒ			AOID	1.5	3	3.9	1.5	4.2	115

SCBS107C - APRIL 1992 - REVISED JANUARY 1997

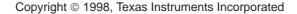
PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE


Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

