SOCS027B - APRIL 1987 - REVISED JULY 1991

 Designed for Use With TI Virtual-Phase CCD Image Sensors 		NS PACKAGE (TOP VIEW)	
 Supports Both Color and Monochrome Applications 	ANLG V _{CC}	16	S/H1
 Contains Three Separate Sample-and-Hold Circuits 		15	5/H2 S/H3 DIG Voo
 Differential Input With 11-dB Gain 	CIN2 5	12	
 5-MHz Sampling Rate on Each Channel 	AIN3 👖 6	11	
 Separate Analog and Digital Supplies for Immunity to Switching Transients 	CIN3 [7 ANLG GND [8	10 9	DUT3 DIG GND

description

The TL1593C is a three-channel sample-and-hold integrated circuit designed for use in processing video signals generated by TI virtual-phase CCD image sensors. It can be used with one-, two-, and three-channel color and monochrome TI virtual-phase CCDs.

Each sample-and-hold channel consists of a differential-input buffer, a digitally controlled switch, and an output buffer that has high impedance. Separate supply and ground pins are provided for the analog and digital sections to ensure optimum isolation. Internal-hold capacitors are included to reduce the external parts count. The differential inputs allow the amplifier return pin of the imager to be connected to CIN of the sample-and-hold circuit to obtain common-mode rejection for antiblooming clock transients in the CCD. The analog inputs should be capacitively coupled from the CCD outputs to ensure optimum performance.

The TL1593C is supplied in a 16-pin plastic package and is characterized for operation from 0°C to 70°C.

This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, precautions should be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.

Specific guidelines for handling devices of this type are contained in the publication Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies available from Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1991, Texas Instruments Incorporated

1

SOCS027B - APRIL 1987 - REVISED JULY 1991

schematic

TERMINAL		1/0	DECODIDITION			
NAME	NO.	1/0	DESCRIPTION			
AIN1	2	I	Channel 1 analog input			
AIN2	4	I	Channel 2 analog input			
AIN3	6	I	Channel 3 analog input			
ANLG GND	8		Analog ground			
ANLG V _{CC}	1		Analog supply voltage			
CIN1	3	I	Channel 1 compensation input			
CIN2	5	I	Channel 2 compensation input			
CIN3	7	I	Channel 3 compensation input			
DIG GND	9		Digital ground			
DIG V _{CC}	13		Digital supply voltage			
OUT1	12	0	Channel 1 output			
OUT2	11	0	Channel 2 output			
OUT3	10	0	Channel 3 output			
S/H1	16	I	Channel 1 sample-and-hold input			
S/H2	15	Ι	Channel 2 sample-and-hold input			
S/H3	14	I	Channel 3 sample-and-hold input			

Terminal Functions

SOCS027B - APRIL 1987 - REVISED JULY 1991

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Analog supply voltage range, ANLG V _{CC} (see Note 1)	\ldots -0.4 V to 16 V
Digital supply voltage range, DIG V _{CC}	\ldots -0.4 V to 16 V
Input voltage range, V _I : AINn inputs	
CINn inputs	–0.4 V to ANLG V _{CC}
S/Hn inputs	
Continuous total power dissipation at (or below) $T_A \le 25^{\circ}C$	
Operating free-air temperature range, T _A	\ldots 30°C to 75°C
Storage temperature range, T _{STG}	55°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

	0	MIN	NOM	MAX	UNIT	
Analog supply voltage, ANLG V _{CC}	A K	10	12	13	V	
Digital supply voltage, DIG V _{CC}	2. 4	10	12	13	V	
High-level input voltage, VIH	23 C	2			V	
Low-level input voltage, VIL	36 °			0.8	V	
	AINn inputs	4.9	5.1	5.3	V	
Input bias voltage, viB	CINn inputs	2.2	2.4	2.6		
	AINn inputs	V _{IB} – 0.3	VIB	V _{IB} + 0.3	V	
input voitage, vj	CINn inputs	V _{IB} – 0.2	VIB	V _{IB} + 0.2	v	
Sampling frequency				5	MHz	
Sampling time		55			ns	
Operating free-air temperature, TA		30		75	°C	

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP‡	MAX	UNIT	
	Output voltage level				6	6.75	7.5	V
	Output voltage swing			2			V	
IIH	High-level input current		V _I = 2.7 V,	DIG V _{CC} = 12 V			10	μΑ
١ _{IL}	Low-level input current		V _I = 0.4 V,	DIG V _{CC} = 12 V		-160	-300	μA
I0-	Output source current				-5			mA
IO+	Output sink current				0.4			mA
ICC	Supply current		DIG V _{CC} = 12 V,	ANLG V_{CC} = 12 V		18.5	28	mA
		AINn inputs				5	7	
Ci	Input capacitance	CINn inputs				19	24	pF
		S/Hn inputs				13	18	
	Input impedance	AINn inputs				100		kΩ
	Output impedance				50	200	Ω	

[‡] All typical values are at $T_A = 25^{\circ}$ C.

SOCS027B - APRIL 1987 - REVISED JULY 1991

MECHANICAL DATA

NS/R-PDSO-G**

PLASTIC SMALL-OUTLINE PACKAGE

16 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated