

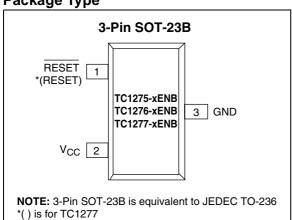
3-Pin Reset Monitors for 3.3V Systems

Features

- Precision V_{CC} Monitor for 3.3V Systems
- 100msec Minimum RESET, RESET Output Duration
- Output Valid to V_{CC} = 1.2V
- V_{CC} Transient Immunity
- · Small 3-Pin SOT-23B Package
- · No External Components

Applications

- Computers
- · Embedded Systems
- · Battery Powered Equipment
- Critical μP Power Supply Monitoring

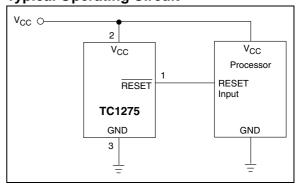

Device Selection Table

Part Number	Order	Package	Temp. Range
TC1275-xENB	Complimentary	3-Pin SOT-23B	-40°C to +85°C
TC1276-xENB	Open Drain	3-Pin SOT-23B	-40°C to +85°C
TC1277-xENB	Complimentary	3-Pin SOT-23B	-40°C to +85°C

NOTE: "x" denotes a suffix for V_{CC} threshold (see table below).

Suffix	Reset V _{CC} Threshold (V)
5	3.06
10	2.88
20	2.55

Package Type


General Description

The TC1275/TC1276/TC1277 are cost-effective system supervisor circuits designed to monitor V_{CC} in digital systems and provide a reset signal to the host processor when necessary. No external components are required.

The reset output is driven active within 20µsec of V_{CC} falling through the reset voltage threshold. RESET is maintained active for a minimum of 100msec after V_{CC} rises above the reset threshold. The TC1277 has an active-high RESET output while the TC1275 and TC1276 have an active-low RESET output. TC1275 and TC1277 each have a complimentary output while the TC1276 has an open drain output. The output of the TC1275 and TC1276 is valid down to V_{CC} = 1.2V. The TC1277 is valid down to V_{CC} = 1.8V. All three devices are available in a 3-Pin SOT-23B package.

The TC1275/TC1276/TC1277 devices are optimized to reject fast transient glitches on the V_{CC} line.

Typical Operating Circuit

1.0 **ELECTRICAL** CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage (V_{CC} to GND)+6.0V RESET, RESET.....-0.3V to (V_{CC} + 0.3V) Input Current, V_{CC}......20mA Output Current, RESET, RESET.....20mA Power Dissipation (T_A ≤ 70°C) 3-Pin SOT-23B (derate 4mW/°C above +70°C)230mW Operating Temperature Range.....-40°C to +85°C Storage Temperature Range-65°C to +150°C

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1275/TC1276/TC1277 ELECTRICAL SPECIFICATIONS

Recomm	ended DC Operating Conditions	s: T _A = -40°C	to +85°C un	less oth	erwise i	noted. Typical value	es are at T _A = +25°C.
Symbol	Parameter	Min	Тур	Max	Units	Device	Test Conditions
V _{CC}	Supply Voltage	1.2 1.8	_	5.5 5.5	V	TC1275, TC1276 TC1277	Note 1
DC Elect	rical Characteristics: T _A = -40°C	to +85°C unl	ess otherwis	e noted	. Typica	l values are at T _A =	+25°C.
Symbol	Parameter	Min	Тур	Max	Units	W.	Test Conditions
V _{OH}	Output Voltage @ 0-500μA	V _{CC} - 0.5V	V _{CC} - 0.1V	_	V	TC1275, TC1277	Note 1
Іон	Output Current @ 2.4 Volts V _{CC} = 5V V _{CC} = 2.7V		13 1.3	_ '	mA	TC1275 TC1277	Note 2
I _{OL}	Output Current @ 0.4 Volts	+10	30	_	mA		Note 2, Note 5
I _{CC}	Operating Current V _{CC} < 5.5V V _{CCTP} < V _{CC} < 5.5V V _{CC} < V _{CCTP}	_	20 20 350	35 35 700	μА	TC1275, TC1277 TC1276 TC1276	Note 3 Note 3 Note 3
V _{CCTP-5}	V _{CC} Trip Point (TC1275/6/7-5)	2.98	3.06	3.15	V		Note 1
	V _{CC} Trip Point (TC1275/6/7-10)	2.80	2.88	2.97	V		Note 1
V _{CCTP-20}	V _{CC} Trip Point (TC1275/6/7-20)	2.47	2.55	2.64	V		Note 1
C _{OUT}	Output Capacitance	_	9	_	pF		
R _P	Internal Pull-Up Resistor	3.0	6.0	9.0	kΩ	TC1276	
AC Elect	rical Characteristics: T _A = -40°C	to +85°C unl	ess otherwis	e noted	l. Typica	l values are at T _A =	+25°C.
Symbol	Parameter	Min	Тур	Max	Units		Test Conditions
t _{RST}	RESET Active Time	100	200	300	msec		
t _{RPD1}	V _{CC} Detect to RESET	_	20	50	μsec	TC1275, TC1276	$V_{CC(LOW)} = 1V$, Figure 3-2
t _{RPD2}	V _{CC} Detect to RESET	_	20	50	μsec	TC1277	$V_{CC(LOW)} = 1V$, Figure 3-4
t _F	V _{CC} Slew Rate (V _{CCTP} (MAX) to V _{CCTP} (MIN))	300	_	_	μsec		Figure 3-2, Figure 3-4
t _R	V _{CC} Slew Rate (V _{CCTP} (MIN) to V _{CCTP} (MAX))	0	_	_	nsec		Figure 3-1, Figure 3-3
t _{RPU1}	V _{CC} Detect to RESET	100	200	300	msec	TC1275, TC1276	Note 4, Figure 3-1
t _{RPU2}	V _{CC} Detect to RESET	100	200	300	msec	TC1277	Note 4, Figure 3-3

- Note All voltages referenced to ground.

 - Measured with V_{CC}≥ 2.7 volts.

 Measured with RESET output open for TC1275/TC1276; measured with RESET output open for TC1277.

 - A 1kΩ external resistor may be required in some applications for proper operation of the microprocessor reset control circuit when using the TC1276.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin No. (3-Pin SOT-23B)	Symbol	Description
1	RESET (TC1275/ TC1276)	$\overline{\text{RESET}} \text{ output remains low while V}_{\text{CC}} \text{ is below the reset voltage threshold, and for 200msec (100msec min.) after V}_{\text{CC}} \text{ rises above reset threshold. The output stage of the TC1275 is complimentary. The output stage of the TC1276 is open drain.}$
1	RESET (TC1277)	RESET output remains high while V_{CC} is below the reset voltage threshold, and for 200msec (100msec min.) after V_{CC} rises above reset threshold. The output stage of the TC1277 is complimentary.
2	V _{CC}	Supply voltage (1.2V to 5.5V TC1275 and TC1276, 1.8V to 5.5V TC1277).
3	GND	Ground.

3.0 APPLICATIONS INFORMATION

3.1 Operation – Power Monitor

The TC1275/TC1276/TC1277 provide the function of detecting out-of-tolerance power supply conditions and warning a processor-based system of impending power failure. When V_{CC} is detected as out-of-tolerance, the RESET signal is asserted. On power-up, RESET is kept active for approximately 200msec after the power supply has reached the selected tolerance. This allows the power supply and microprocessor to stabilize before RESET is released.

FIGURE 3-1: Timing Diagram – Power Up (TC1275/TC1276)

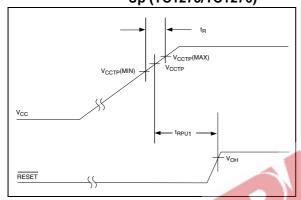


FIGURE 3-2: Timing Diagram – Power Down (TC1275/TC1276)

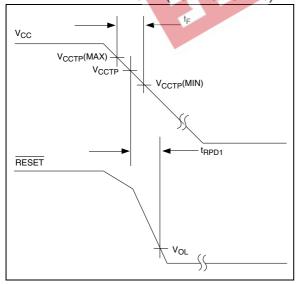


FIGURE 3-3: Timing Diagram – Power Up (TC1277)

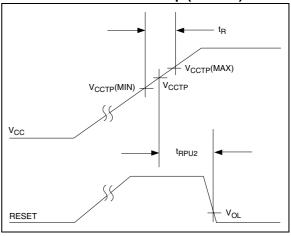
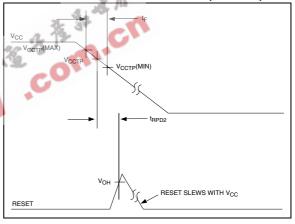



FIGURE 3-4: Timing Diagram – Power Down (TC1277)

3.2 V_{CC} Transient Rejection

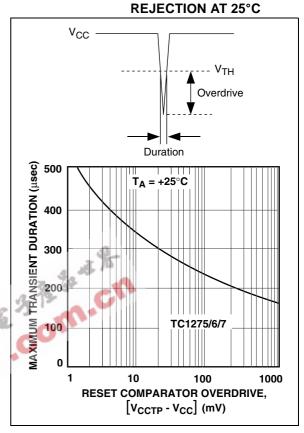
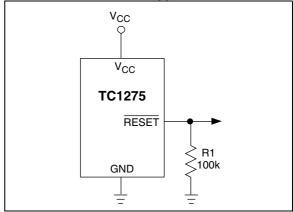
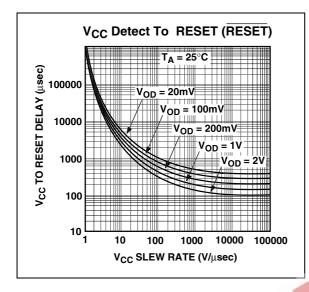
The TC1275/TC1276/TC1277 provides accurate V_{CC} monitoring and reset timing during power-up, power-down, and brownout/sag conditions, and rejects negative-going transients (glitches) on the power supply line. Figure 3-5 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive that lays ${\bf under}$ the curve will ${\bf not}$ generate a reset signal. Combinations above the curve are detected as a brownout or power-down. Transient immunity can be improved by adding a capacitor in close proximity to the V_{CC} pin of the TC1275/TC1276/TC1277.

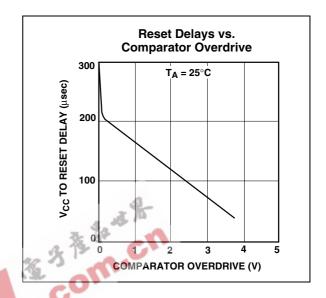
3.3 RESET Signal Integrity During Power-Down

The TC1275 $\overline{\text{RESET}}$ output is valid to $V_{CC}=1.2V.$ Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the μP will be floating at an undetermined voltage. Most digital systems are completely shut down well above this voltage. However, in situations where RESET must be maintained valid to $V_{CC}=0V,\ a$ pull-down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 3-6). This resistor value, though not critical, should be chosen such that it does not appreciably load RESET under normal operation (100k Ω will be suitable for most applications). Similarly, a pull-up resistor to V_{CC} is required for the TC1277 to ensure a valid high RESET for V_{CC} below 1.8V.

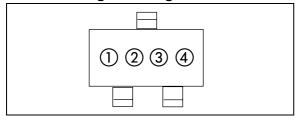
FIGURE 3-5: MAXIMUM TRANSIENT DURATION VS.

OVERDRIVE FOR GLITCH

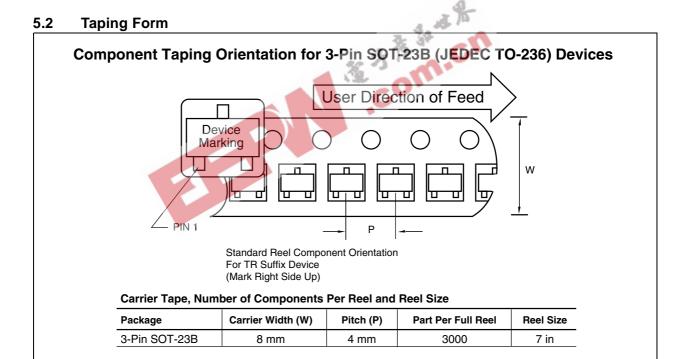

FIGURE 3-6: ENSURING RESET VALID TO $V_{CC} = 0V$

4.0 TYPICAL CHARACTERISTICS

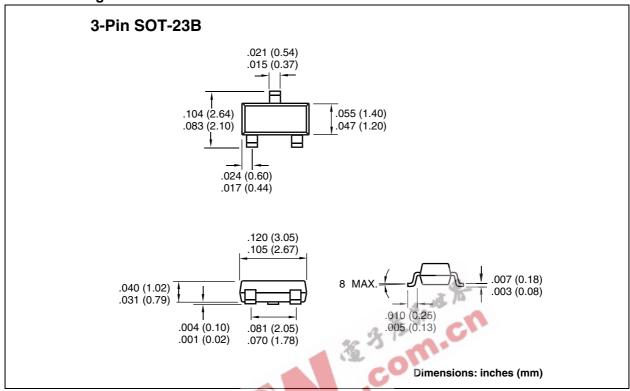

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information


① & ② = part number code + temperature range and voltage

TC1275 (V)	Code
2.55	DA
2.88	DB
3.06	DC


TC1276 (V)	Code
2.55	EA
2.88	EB
3.06	EC
TC1277 (V)	Code
TC1277 (V) 2.55	Code FA
• •	

ex: 1275-20 = (DA)

- ③ represents year and quarter code
- 4 represents production lot ID code

5.3 Package Dimensions

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office
- The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 The Microchip Worldwide Site (www.microchip.com)
- 2. 3.

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

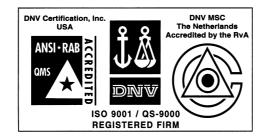
NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.


Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886

Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd.

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu

Shenzhen 518001, China

Tel: 86-755-2350361 Fax: 86-755-2366086

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom Microchip Ltd.

505 Eskdale Road Winnersh Triangle Berkshire, England RG41 5TU

Tel: 44 118 921 5869 Fax: 44-118 921-5820

05/01/02