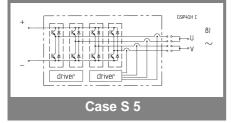
SKiiP 432GH120-2*207CTV ...

SKiiP® 2

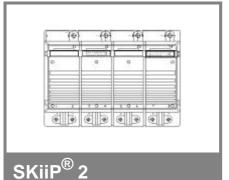
4-pack - integrated intelligent Power System

Power section


SKiiP 432GH120-2*207CTV

Features

- · SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	400 (300)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	400 (300)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	2880	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	41	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics T _s				$\Gamma_{\rm s}$ = 25 °C unless otherwise specified			
Symbol	Conditions			min.	typ.	max.	Units
IGBT							
V _{CEsat}	$I_C = 350 \text{ A}, T_i = 25 \text{ (}^{\circ}$	125) °C			2,6 (3,1)	3,1	V
V _{CEO}	T _i = 25 (125) °C				1,2 (1,3)	1,5 (1,6)	V
r _{CE}	T _j = 25 (125) °C				3,8 (5)	4,5 (5,8)	mΩ
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{C}$	ES,			(20)	0,8	mA
	T _i = 25 (125) °C						
E _{on} + E _{off}	$I_C = 350 \text{ A}, V_{CC} = 60$	00 V		<u></u>		105	mJ
	T _j = 125 °C, V _{CC} = 9		3.15	JD.		185	mJ
R _{CC' + EE'}	terminal chip, T _i = 12	25 °C	E 38	-17	0,25		mΩ
L _{CE}	top, bottom	~ X		- T	7,5		nΗ
C _{CHC}	per phase, AC-side		26.00		2,8		nF
Inverse o		C)	9.				
$V_F = V_{EC}$	$I_F = 300 \text{ A}, T_i = 25 \text{ (}^{\circ}$	125) °C			2,1 (1,9)	2,6	V
V_{TO}	T _i = 25 (125) °C				1,3 (1)	1,4 (1,1)	V
r _T	$T_j = 25 (125) ^{\circ}C$				2,5 (3)	3,4 (3,9)	mΩ
E _{rr}	$I_C = 350 \text{ A}, V_{CC} = 60$	00 V				12	mJ
	$T_j = 125 ^{\circ}\text{C}, V_{\text{CC}} = 9$	00 V				15	mJ
Mechani	cal data						
M _{dc}	DC terminals, SI Un	its		6		8	Nm
M _{ac}	AC terminals, SI Uni			13		15	Nm
w	SKiiP® 2 System w/o	heat sink			3,5		kg
w	heat sink				8,5		kg
Thermal	characteristics	(P16 hea	nt sink; 27	75m ³ /h);	", " refer	ence to	
temperat	ure sensor			_	'		_
$R_{th(j-s)l}$	per IGBT					0,064	K/W
$R_{th(j-s)D}$	per diode					0,188	K/W
$R_{th(s-a)}$	per module					0,033	K/W
Z _{th}	R _i (mK/W) (max. values)			tau _i (s)			
	1 2	3	4	1	2	3	4
$Z_{th(j-r)I}$	7 50	8		1	0,13	0,001	
$Z_{th(j-r)D}$	21 144	23		1	0,13	0,001	
$Z_{th(r-a)}$	1,6 22	7	2,4	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

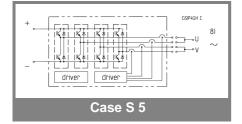
SKiiP 432GH120-2*207CTV ...

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 432GH120-2*207CTV

Gate driver features


- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- U-option is integrated on left driver, (DC terminals at bottom; refer to case drawing)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1}	stabilized 15 V power supply	18	V		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{max}	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characte	(T _a = 25			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	210+320*f/f _{max} +1,3*(I _{AC} /A)			mA
I _{S2}	V _{S2} = 24 V	160+220*f/f _{max} +1,0*(I _{AC} /A)			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time	-0	3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		400		А
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
ITRIPSC	over current trip level (I _{analog OUT} = 10 V)		500		Α
ITRIPLG	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

