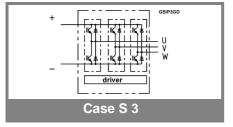
SKiiP 402GD061-358CTV ...

6-pack - integrated intelligent Power System

Power section


SKiiP 402GD061-358CTV

Features

- SKiiP technology inside
- · Low loss IGBTs
- · CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)

Absolute	Maximum Ratings T	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		600	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	400	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	400 (300)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	400 (300)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	4000	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	80	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	2500	V			

Characteristics T _s = 25 °C unless otherwise specifie						specified	
Symbol	Conditions			min.	typ.	max.	Units
IGBT							
V_{CEsat}	$I_C = 400 \text{ A}, T_i = 25 (125)$) °C			2,3 (2,6)	2,6	V
V _{CEO}	T _i = 25 (125) °C				0,8 (0,7)	1 (0,9)	V
r_{CE}	T _j = 25 (125) °C				3,8 (4,8)	4 (5)	mΩ
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$				(20)	0,4	mA
	T _j = 25 (125) °C						
E _{on} + E _{off}	I _C = 400 A, V _{CC} = 300 \	/		£		36	mJ
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 400$	V	3.15	JIA		53	mJ
R _{CC' + EE'}	terminal chip, T _i = 125 °	C &	34	-17	0,5		mΩ
L _{CE}	top, bottom	火厂		- T	15		nΗ
C _{CHC}	per phase, AC-side		44.		0,8		nF
Inverse o	liode	6	, ,				•
$V_F = V_{EC}$	$I_F = 400 \text{ A}, T_i = 25 (125)$) °C			1,5 (1,5)	1,8	V
V_{TO}	T _i = 25 (125) °C				0,8 (0,6)	1 (0,8)	V
r_{T}	$T_j = 25 (125) ^{\circ}C$				1,8 (2,2)	1,9 (2,3)	mΩ
Err	$I_C = 400 \text{ A}, V_{CC} = 300 \text{ V}$					13	mJ
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 400$	V				15	mJ
Mechani	cal data						
M _{dc}	DC terminals, SI Units			6		8	Nm
M _{ac}	AC terminals, SI Units			13		15	Nm
W	SKiiP® 2 System w/o he	eat sink			2,7		kg
W	heat sink				6,6		kg
	characteristics (P	l6 heat	sink; 29	95 m³/h)	; " _r " refer	ence to	
	ure sensor			ı	•		
R _{th(j-s)I}	per IGBT					0,111	K/W
$R_{th(j-s)D}$	per diode					0,2	K/W
R _{th(s-a)}	per module					0,036	K/W
Z_{th}	R _i (mK/W) (max. values	1	tau				
	1 2	3	4	1	2	3	4
$Z_{th(j-r)l}$	12 86	13		1	0,13	0,001	
Z _{th(j-r)D}	22 154	24		1	0,13	0,001	
$Z_{th(r-a)}$	11,1 18,3	3,5	3,1	204	60	6	0,02

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

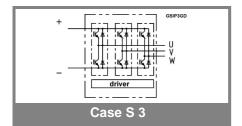
SKiiP 402GD061-358CTV ...

6-pack - integrated intelligent Power System

6-pack integrated gate driver

SKiiP 402GD061-358CTV

Gate driver features


- CMOS compatible inputs
- · Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings				
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S1} V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	2500	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{max}	switching frequency	20	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C	

Characte	(T _a = 25 °			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	340+490*f/f _{max} +3,5*(I _{CA} /A)		mA	
I _{S2}	V _{S2} = 24 V	250+360*f/f _{max} +2,6*(I _{AC} /A)			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,1		μs
t _{d(off)IO}	input-output turn-off propagation time		1,4		μs
t _{pERRRESET}	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time	-0	2,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		330		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 13/20/22/24/26			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
ITRIPSC	over current trip level (I _{analog OUT} = 10 V)		413		Α
I _{TRIPLG}	ground fault protection		96		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	400			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

