

DUAL 4-INPUT MULTIPLEXER

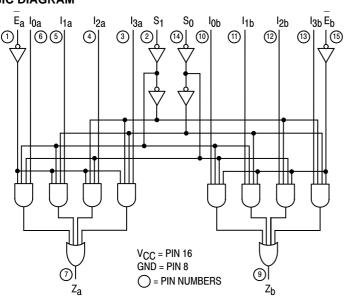
The LSTTL/MSI SN54/74LS153 is a very high speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the LS153 can generate any two functions of three variables. The LS153 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Multifunction Capability
- Non-Inverting Outputs
- Separate Enable for Each Multiplexer
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package

LOADING (Note a)


PIN NAMES

		HIGH	LOW
<u>S</u> 0	Common Select Input	0.5 U.L.	0.25 U.L
E	Enable (Active LOW) Input	0.5 U.L.	0.25 U.L
I ₀ , I ₁	Multiplexer Inputs	0.5 U.L.	0.25 U.L
Z	Multiplexer Output (Note b)	10 U.L.	5 (2.5) U.L
			-

NOTES

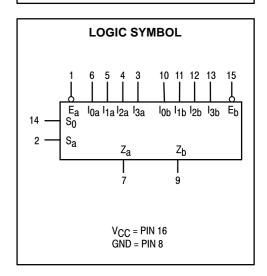
- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

SN54/74LS153

DUAL 4-INPUT MULTIPLEXER LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09


N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

SN54/74LS153

FUNCTIONAL DESCRIPTION

The LS153 is a Dual 4-input Multiplexer fabricated with Low Power, Schottky barrier diode process for high speed. It can select two bits of data from up to four sources under the control of the common Select Inputs (S₀, S₁). The two 4-input multiplexer circuits have individual active LOW Enables (E_a, E_b) which can be_used to strobe the outputs independently. When the Enables (E_a, E_b) are HIGH, the corresponding outputs (Z_a, Z_b) are forced LOW.

The LS153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select Inputs. The logic equations for the outputs are shown below.

$$\begin{split} Z_{a} &= \overline{E}_{a} \cdot (I_{0a} \cdot \overline{S}_{1} \cdot \overline{S}_{0} + I_{1a} \cdot \overline{S}_{1} \cdot S_{0} + I_{2a} \cdot S_{1} \cdot \overline{S}_{0} + \\ & I_{3a} \cdot S_{1} \cdot S_{0}) \\ Z_{b} &= \overline{E}_{b} \cdot (I_{0b} \cdot \overline{S}_{1} \cdot \overline{S}_{0} + I_{1b} \cdot \overline{S}_{1} \cdot S_{0} + I_{2b} \cdot S_{1} \cdot \overline{S}_{0} + \\ & I_{3b} \cdot S_{1} \cdot S_{0}) \end{split}$$

The LS153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select Inputs. A less obvious application is a function generator. The LS153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

TRι	JTH	TAB	LE
-----	-----	-----	----

SELECT	INPUTS		INPU	OUTPUT			
S ₀	S ₁	E	l ₀	l ₁	l ₂	l ₃	Z
Х	Х	Н	Х	Х	Х	X	
L	L	L	L	X	X	X	4.5
L	L	L	Н	X	X	X	Н
Н	L	L	X	L	X	X	L
Н	L	L	X	Н	X	X	Н
L	Н	L	Χ	X	L	Χ	L
L	H	1	X	X	Н	X	Н
H	H	L	X	Χ	X	L	L
H	Н	L	Х	Χ	Χ	Н	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS153

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V	Input LOW Voltage	54			0.7	V	Guaranteed Inpu	t LOW Voltage for
V_{IL}	input LOW voltage	74			0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
\/-··	Output HICH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}	
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table	
Va.	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
L	Innut I II Cl I Current				20	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V
lΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
IIL	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note	1)	-20		-100	mA	V _{CC} = MAX	
lcc	Power Supply Current				10	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		11	Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
^t PLH ^t PHL	Propagation Delay Data to Output		10 17	15 26	ns	Figure 2	
^t PLH ^t PHL	Propagation Delay Select to Output		19 25	29 38	ns	Figure 1	$V_{CC} = 5.0 V$ $C_L = 15 pF$
^t PLH ^t PHL	Propagation Delay Enable to Output		16 21	24 32	ns	Figure 2	

AC WAVEFORMS

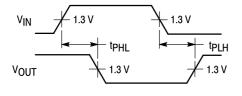
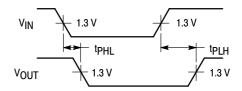
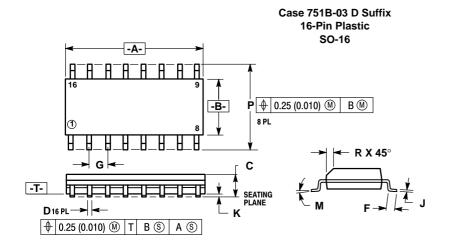
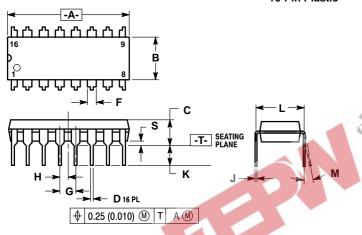


Figure 1


Figure 2

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
- 751B-01 IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	0° 7°		7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Case 648-08 N Suffix 16-Pin Plastic

Case 620-09 J Suffix 16-Pin Ceramic Dual In-Line -A--B--T-SEATING

G **D** 16 PL

♦ 0.25 (0.010) M T A S

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

tix						
	NOTES:					
	1. DIMENS	SIONING .	AND TOL	ERANCIN	IG PER A	NSI
	Y14.5M	. 1982.				
	2. CONTR	OLLING D	DIMENSIO	N: INCH.		
	3. DIMENS	SION "L" T	O CENTE	R OF LE	ADS WH	EN
	FORME	D PARAL	LEL.			
	4. DIMENS	SION "B" [OOES NO	T INCLUI	DE MOLD)
	FLASH.					
	5. ROUND	ED COR	NERS OP	TIONAL.		
and the same of th	6. 648-01	THRU -07	OBSOLE	TE, NEW	STANDA	RD
3.*	648-08.					
28- 28-						
A 28		MILLIM	ETERS	INC	HES	
1	DIM	MIN	MAX	MIN	MAX	
40 43 · A	A	18.80	19.55	0.740	0.770	
100	В	6.35	6.85	0.250	0.270	
	С	3.69	4.44	0.145	0.175	
	D	0.39	0.53	0.015	0.021	
	F	1.02	1.77	0.040	0.070	1
	G	2.54	BSC	0.100	BSC	
	Н	1.27	BSC	0.050	BSC	
	J	0.21	0.38	0.008	0.015	
	К	2.80	3.30	0.110	0.130	1
	L	7.50	7.74	0.295	0.305]
	М	0°	10°	0°	10°	1
	S	0.51	1.01	0.020	0.040]

NOTES:

- OLES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD CO.00.0.

	MILLIM	ETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	19.05	19.55	0.750	0.770		
В	6.10	7.36	0.240	0.290		
С	_	4.19		0.165		
D	0.39	0.53	0.015	0.021		
E	1.27	1.27 BSC		BSC		
F	1.40	1.77	0.055	0.070		
G	2.54	2.54 BSC		BSC		
J	0.23	0.27	0.009	0.011		
K	_	5.08	_	0.200		
L	7.62	BSC	0.300	BSC		
M	0°	15°	0°	15°		
N	0.39	0.88	0.015	0.035		

J 16 PL

♦ 0.25 (0.010) M T B S

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "" are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

