INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT1954-bit parallel access shift register

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT195

FEATURES

- · Asynchronous master reset
- J, K, (D) inputs to the first stage
- Fully synchronous serial or parallel data transfer
- · Shift right and parallel load capability
- · Complement output from the last stage
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT195 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT195 performs serial, parallel, serial-to-parallel or parallel-to-serial data transfer at very high speeds. The "195" operates on two primary modes: shift right ($Q_0 \rightarrow Q_1$) and parallel load, which are controlled

by the state of the parallel load enable (\overline{PE}) input. Serial data enters the first flip-flop (Q_0) via the J and \overline{K} inputs when the \overline{PE} input is HIGH and shifted one bit in the direction $Q_0 \to Q_1 \to Q_2 \to Q_3$ following each LOW-to-HIGH clock transition. The J and \overline{K} inputs provide the flexibility of the J \overline{K} type input for special applications and by tying the pins together, the simple D-type input for general applications. The "195" appears as four common clocked D flip-flops when the \overline{PE} input is LOW.

After the LOW-to-HIGH clock transition, data on the parallel inputs (D $_0$ to D $_3$) is transferred to the respective Q $_0$ to Q $_3$ outputs. Shift left operation (Q $_3 \rightarrow Q_2$) can be achieved by tying the Q $_n$ outputs to the D $_{n\text{-}1}$ inputs and holding the $\overline{\text{PE}}$ input LOW.

All parallel and serial data transfers are synchronous, occurring after each LOW-to-HIGH clock transition. There is no restriction on the activity of the J, \overline{K} , D_n and \overline{PE} inputs for logic operation other than the set-up and hold time requirements. A LOW on the asynchronous master reset (\overline{MR}) input sets all Q outputs LOW, independent of any other input condition.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBOL	PARAMETER	CONDITIONS	нс	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	C _L = 15 pF; V _{CC} = 5 V	15	15	ns	
f _{max}	maximum clock frequency		57	57	MHz	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	105	105	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

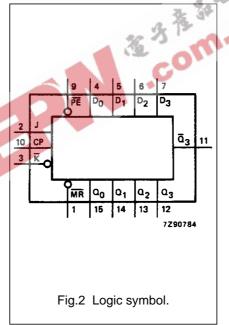
C_L = output load capacitance in pF

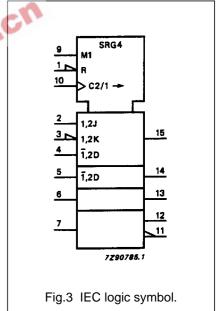
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

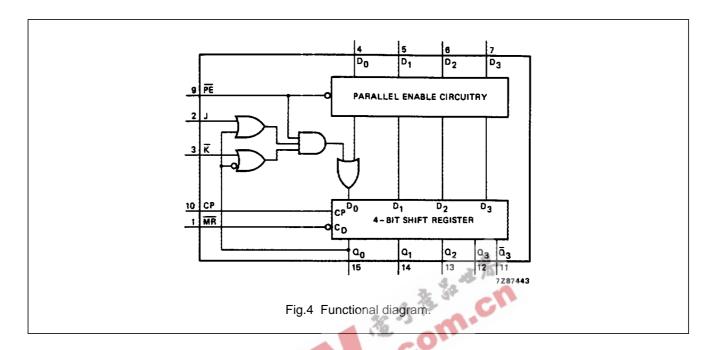
ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT195

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	MR	master reset input (active LOW)
2	J	first stage J-input (active HIGH)
3	K	first stage K-input (active LOW)
4, 5, 6, 7	D ₀ to D ₃	parallel data inputs
8	GND	ground (0 V)
9	PE	parallel enable input (active LOW)
10	СР	clock input (LOW-to-HIGH edge-triggered)
11	\overline{Q}_3	inverted output from the last stage
15, 14, 13, 12	Q ₀ to Q ₃	parallel outputs
16	V _{CC}	positive supply voltage



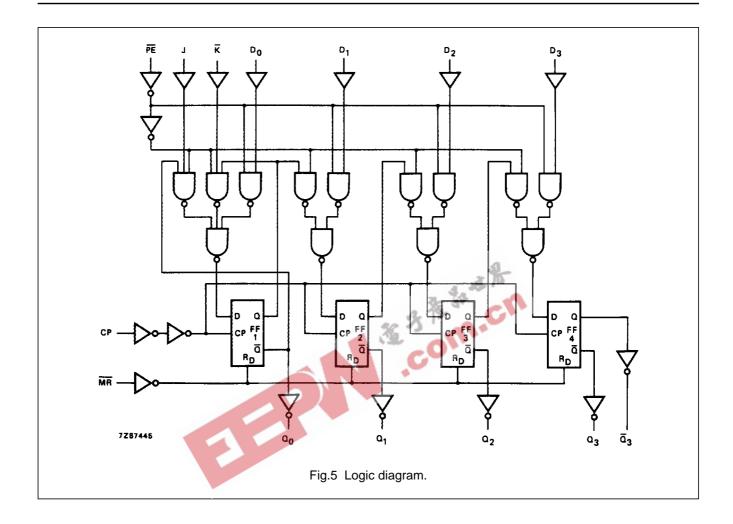
Philips Semiconductors Product specification

4-bit parallel access shift register

74HC/HCT195

APPLICATIONS

- · Serial data transfer
- Parallel data transfer
- Serial-to-parallel data transfer
- Parallel-to-serial data transfer


FUNCTION TABLE

ODED ATING MODES		INPUTS							OUTPUTS					
OPERATING MODES	MR	СР	PE	J	K	D _n	Q_0	Q ₁	Q ₂	Q ₃	\overline{Q}_3			
asynchronous reset	L	Х	Х	Х	Х	Х	L	L	L	L	Н			
shift, set first stage	Н	1	h	h	h	Х	Н	q0	q1	q2	<u>_</u> <u>q</u> 2			
shift, reset first stage	H	1	h	1	1	Х	L	q0	q1	q2	<u>q</u> 2			
shift, toggle first stage	H	1	h	h	1	Х	_ 0	q0	q1	q2	<u>q</u> 2			
shift, retain first stage	Н	1	h	l I	h	Х	q0	q0	q1	q2	q2			
parallel load	Н	1	I	Х	Х	d _n	d ₀	d ₁	d ₂	d_3	\overline{d}_3			

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - q, d = lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition
 - X = don't care
 - ↑ = LOW-to-HIGH clock transition

74HC/HCT195

Philips Semiconductors Product specification

4-bit parallel access shift register

74HC/HCT195

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND=0\ V;\ t_r=t_f=6\ ns;\ C_L=50\ pF$

		T _{amb} (°C)								TES	TEST CONDITIONS		
OVMBOL	PARAMETER	74HC									WAVEFORMS		
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS		
		min.	typ.	max.	min.	max.	min.	max.		(•)			
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		50 18 14	150 30 26		190 38 33	42.16	225 45 38	ns	2.0 4.5 6.0	Fig.6		
t _{PHL}	propagation delay MR to Q _n		41 15 12	150 30 26	136	190 38 33	14.0	225 45 38	ns	2.0 4.5 6.0	Fig.8		
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6		
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6		
t _W	master reset pulse width LOW	80 16 14	11 4 3		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8		
t _{rem}	removal time MR to CP	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8		
t _{su}	set-up time J to CP	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Figs 8 and 9		
t _{su}	set-up time \overline{K} , \overline{PE} , \overline{D}_n to \overline{CP}	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Figs 8 and 9		
t _h	hold time J, K, PE, D _n to CP	3 3 3	-8 -3 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Figs 8 and 9		
f _{max}	maximum clock pulse frequency	6 30 35	17 52 62		5 24 28		4 20 24		MHz	2.0 4.5 6.0	Fig.6		

Philips Semiconductors Product specification

4-bit parallel access shift register

74HC/HCT195

DC CHARACTERISTICS FOR HCT

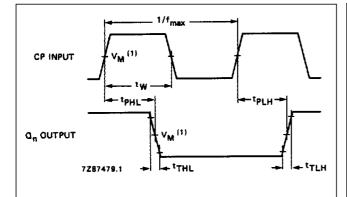
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
PE	0.65
all others	0.35

AC CHARACTERISTICS FOR 74HCT

all others	0.65						4	0_			
	ACTERISTICS FOR 74HCT $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$			36 J	花						
			T _{amb} (°C)								T CONDITIONS
SYMBOL	PARAMETER			74HCT					UNIT		WAVEFORMS
OTIMBOL	PARAWETER		+25	−40 to +85		-40 to +125		ONIT	V _{CC}	WAVELORMO	
		min.	typ.	max.	min.	max.	min.	max.		` ,	
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		18	32		40		48	ns	4.5	Fig.6
t _{PHL}	propagation delay MR to Q _n		17	35		44		53	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	20	6		25		30		ns	4.5	Fig.6
t _W	master reset pulse width LOW	16	6		20		24		ns	4.5	Fig.8
t _{rem}	removal time MR to CP	16	6		20		24		ns	4.5	Fig.8
t _{su}	set-up time J, K, PE to CP	20	12		25		30		ns	4.5	Figs 8 and 9
t _{su}	set-up time D _n to CP	16	6		20		24		ns	4.5	Figs 8 and 9
t _h	hold time J, K, PE, D _n to CP	3	- 5		3		3		ns	4.5	Figs 8 and 9
f _{max}	maximum clock pulse frequency	27	52		22		18		MHz	4.5	Fig.6

74HC/HCT195

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (CP) to output (Q_n) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

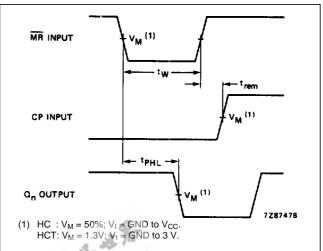
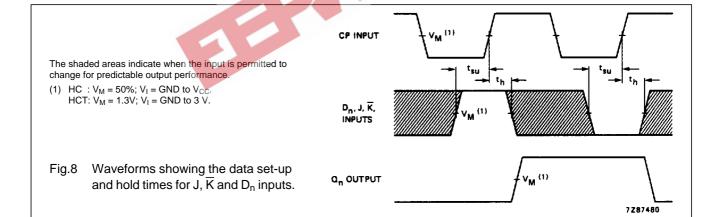
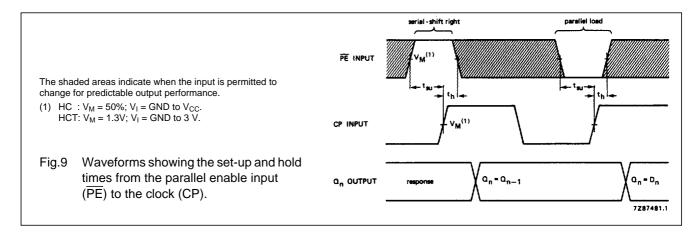




Fig.7 Waveforms showing the master reset

(MR) pulse width, the master reset to output

(Qn) propagation delays and the master
reset to clock (CP) removal time

Philips Semiconductors Product specification

4-bit parallel access shift register

74HC/HCT195

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

