

SEMICONDUCTOR

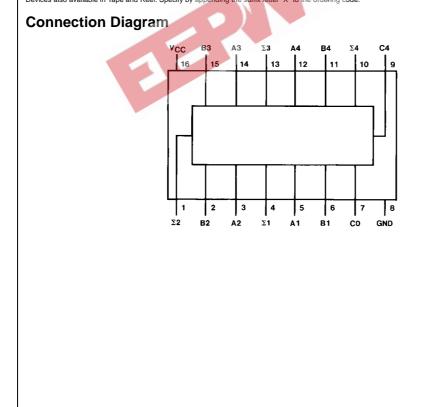
DM74LS283 4-Bit Binary Adder with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

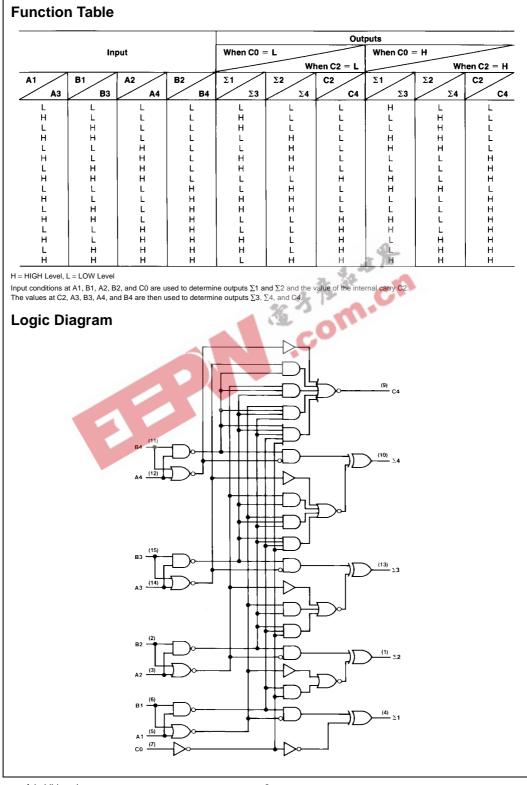
The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

August 1986 Revised March 2000


Features

- Full-carry look-ahead across the four bits
- I uncarry took aread across the four bits
 Systems achieve partial look-ahead performance with
- the economy of ripple carry
- Typical add times
 Two 8-bit words
 25 ns
 Two 16-bit words
 45 ns
- Typical power dissipation per 4-bit adder 95 mW

Ordering Code:


© 2000 Fairchild Semiconductor Corporation

	Order Number	Package Number	Package Description		
	DM74LS283M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow		
	DM74LS283N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		
	Devices also available	in Tane and Reel Specify	y by appending the suffix letter "X" to the ordering code		

DS006421

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

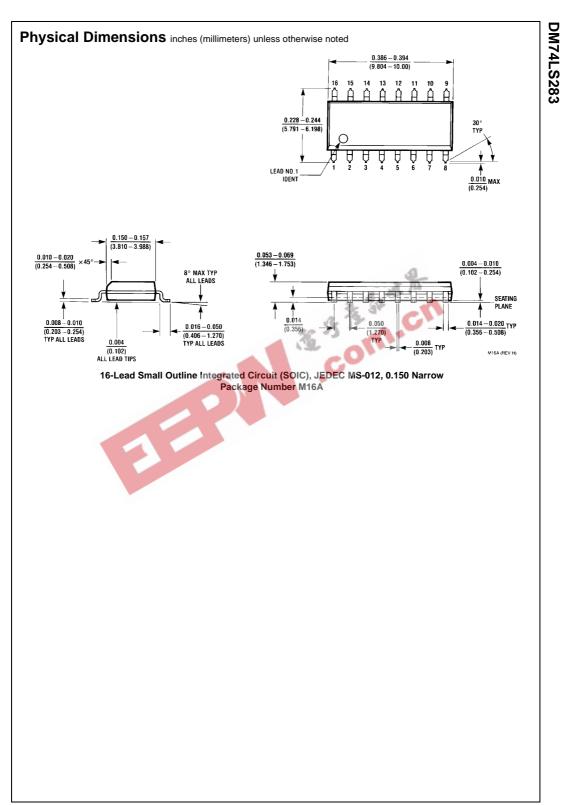
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

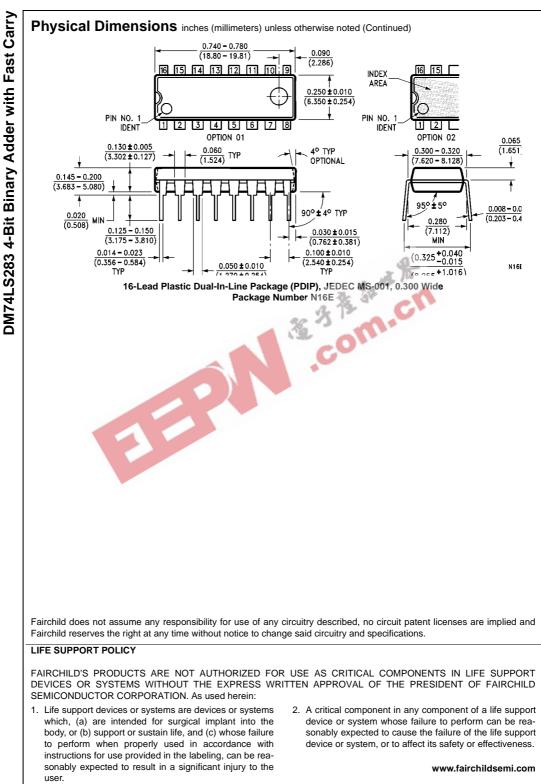
DM74LS283

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
/ _{cc}	Supply Voltage	4.75	5	5.25	V
′н	HIGH Level Input Voltage	2			V
ΪL	LOW Level Input Voltage			0.8	V
ЭН	HIGH Level Output Current			-0.4	mA
)L	LOW Level Output Current			8	mA
A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics


$ \begin{array}{ c c c c c } \hline Symbol & Parameter & Conditions & Min & \hline Vp \\ \hline V_{I} & Input Clamp Voltage & V_{CC} = Min, I_{I} = -18 mA & & & & & & & \\ \hline V_{OH} & HIGH Level & V_{CC} = Min, I_{OH} = Max & & & & & & & & \\ \hline Output Voltage & V_{IL} = Max, V_{IH} = Min & & & & & & & & & \\ \hline V_{OL} & LOW Level & V_{CC} = Min, I_{OL} = Max & & & & & & & & & \\ \hline Output Voltage & V_{IL} = Max, V_{IH} = Min & & & & & & & & & & \\ \hline V_{OL} & LOW Level & V_{CC} = Min, I_{OL} = Max & & & & & & & & & \\ \hline Output Voltage & V_{IL} = Max, V_{IH} = Min & & & & & & & & & \\ \hline V_{OL} & Input Current @ Max & V_{CC} = Max & & & & & & & & & & & & \\ \hline I_{I} & Input Current @ Max & V_{CC} = Max & & & & & & & & & & & & \\ Input Voltage & V_{I} = 7V & & & & & & & & & & & & & \\ \hline I_{IH} & HIGH Level & V_{CC} = Max & & & & & & & & & & & & & & \\ Input Current & V_{I} = 2.7V & & & & & & & & & & & & & & \\ \hline I_{IL} & LOW Level & V_{CC} = Max & & & & & & & & & & & & & & & \\ Input Current & V_{I} = 0.4V & & & & & & & & & & & & & & & & & & \\ \hline I_{OS} & Short Circuit Output Current & V_{CC} = Max & & & & & & & & & & & & & & & & & & &$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Max	Units	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1.5	V	
$\begin{tabular}{ c c c c c } \hline Output Voltage & V_{IL} = Max, V_{IH} = Min & & & & & & & & & \\ \hline V_{OL} & LOW Level & V_{CC} = Min, I_{OL} = Max & & & & & & & & & & \\ \hline Output Voltage & V_{IL} = Max, V_{IH} = Min & & & & & & & & & & & \\ \hline I_{OL} = 4 mA, V_{CC} = Min & & & & & & & & & & & & & & & \\ \hline I_{OL} = 4 mA, V_{CC} = Min & & & & & & & & & & & & & & & & & \\ \hline I_{OL} = 4 mA, V_{CC} = Max & & & & & & & & & & & & & & & & & & &$		V	
$\begin{tabular}{ c c c c c } \hline Output Voltage & V_{IL} = Max, V_{IH} = Min & 0.35 \\ \hline V_{IL} = Max, V_{IH} = Min & 0.25 \\ \hline I_{I} & Input Current @ Max & V_{CC} = Max & A, B & 0.25 \\ \hline I_{I} & Input Voltage & V_{I} = 7V & C0 & 0.25 \\ \hline I_{IH} & HIGH Level & V_{CC} = Max & A, B & 0.25 \\ \hline I_{IIH} & HIGH Level & V_{CC} = Max & A, B & 0.25 \\ \hline I_{IIL} & LOW Level & V_{CC} = Max & A, B & 0.25 \\ \hline I_{IL} & LOW Level & V_{CC} = Max & A, B & 0.25 \\ \hline I_{IIL} & LOW Level & V_{IL} = 0.4V & C0 & 0.25 \\ \hline I_{IIL} & Input Current & V_{I} = 0.4V & C0 & 0.25 \\ \hline I_{I$		v	
$\begin{tabular}{ c c c c c c } \hline Output Voltage & V_{IL} = Max, V_{IH} = Min & 0.25 \\ \hline I_0 = 4 mA, V_{CC} = Min & 0.25 \\ \hline I_0 = 4 mA, V_{CC} = Min & 0.25 \\ \hline I_0 = 4 mA, V_{CC} = Max & A, B & 0.25 \\ \hline I_0 = V_{CC} = Max & A, B & $	0.5	0.5 V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5		
Input Voltage VI = 7V C0 Implement IIH HIGH Level VCC = Max A, B Implement	0.4		
IIIH HIGH Level V _{CC} = Max A, B Input Current V _I = 2.7V C0 Input Current IIIL LOW Level V _{CC} = Max A, B Input Current VI = 0.4V C0 Input Current C0 Input Current	0.2	mA	
Input Current $V_1 = 2.7V$ C0 I _{IL} LOW Level $V_{CC} = Max$ A, B Input Current $V_1 = 0.4V$ C0	0.1	IIIA	
III LOW Level V _{CC} = Max A, B Input Current VI = 0.4V C0	40		
Input Current V1 = 0.4V C0	20	μΑ	
	-0.8	mA	
Ins Short Circuit Output Current Vnc = Max -20	-0.4		
00	-100	mA	
I _{CC1} Supply Current V _{CC} = Max (Note 4) 19	34	mA	
I _{CC2} Supply Current V _{CC} = Max (Note 5) 22	39	mA	


Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with all outputs OPEN, all B inputs LOW and all other inputs at 4.5V, or all inputs at 4.5V.

Note 5: $I_{\rm CC2}$ is measured with all outputs OPEN and all inputs GROUNDED.

www.fairchildsemi.com