
PRESETTABLE BCD/DECADE **UP/DOWN COUNTER** PRESETTABLE 4-BIT BINARY **UP/DOWN COUNTER**

The SN54/74LS192 is an UP/DOWN BCD Decade (8421) Counter and the SN54/74LS193 is an UP/DOWN MODULO-16 Binary Counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs.

Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load (PL) and the Master Reset (MR) inputs asynchronously override the clocks.

- Low Power . . . 95 mW Typical Dissipation
- High Speed . . . 40 MHz Typical Count Frequency
- Synchronous Counting
- Asynchronous Master Reset and Parallel Load
- Individual Preset Inputs
- · Cascading Circuitry Internally Provided
- Input Clamp Diodes Limit High Speed Termination Effects

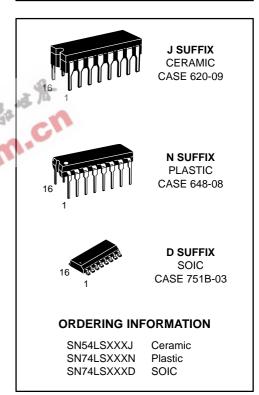
CONNECTION DIAGRAM DIP (TOP VIEW)

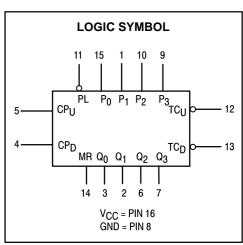
NOTF: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOADING (Note a)

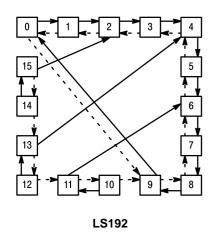
PIN NAMES

		HIGH	LOW
CPU CPD MR PL Pn Qn	Count Up Clock Pulse Input Count Down Clock Pulse Input Asynchronous Master Reset (Clear) Input Asynchronous Parallel Load (Active LOW) Input Parallel Data Inputs Flip-Flop Outputs (Note b)	0.5 U.L. 0.5 U.L. 0.5 U.L. 0.5 U.L. 0.5 U.L. 10 U.L.	0.25 U.L. 0.25 U.L. 0.25 U.L. 0.25 U.L. 0.25 U.L. 5 (2.5) U.L.
TC _D TC _U	Terminal Count Down (Borrow) Output (Note b) Terminal Count Up (Carry) Output (Note b)	10 U.L. 10 U.L.	5 (2.5) U.L. 5 (2.5) U.L.
NOTES:			(=:-)


a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

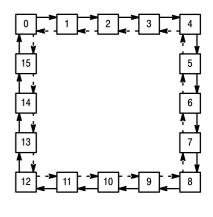

b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS192 SN54/74LS193

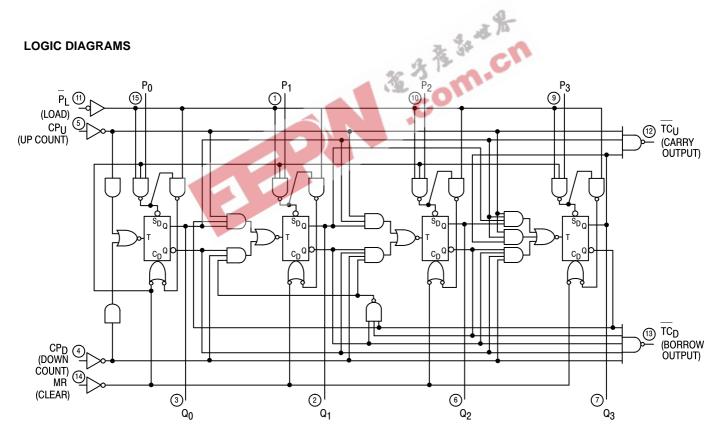

PRESETTABLE BCD/DECADE **UP/DOWN COUNTER** PRESETTABLE 4-BIT BINARY **UP/DOWN COUNTER**

LOW POWER SCHOTTKY

STATE DIAGRAMS

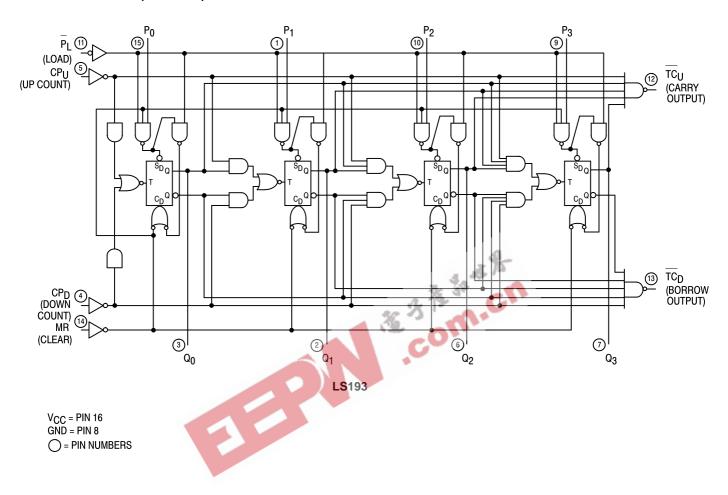


LS192 LOGIC EQUATIONS FOR TERMINAL COUNT


 $\begin{array}{l} \overline{\underline{TC}}_U = \underline{Q_0} \cdot \underline{Q_3} \cdot \overline{\underline{CP_U}} \\ TC_D = \underline{Q_0} \cdot \underline{Q_1} \cdot \underline{Q_2} \cdot \underline{Q_3} \cdot \overline{\underline{CP_D}} \end{array}$

LS193 LOGIC EQUATIONS FOR TERMINAL COUNT

 $\begin{array}{l} \overline{\underline{TC}}_U = \underline{Q}_0 \cdot \underline{Q}_1 \cdot \underline{Q}_2 \cdot \underline{Q}_3 \cdot \overline{\underline{CP}_U} \\ TC_D = \underline{Q}_0 \cdot \underline{Q}_1 \cdot \underline{Q}_2 \cdot \underline{Q}_3 \cdot \underline{CP}_D \end{array}$


LS193

LS192

 V_{CC} = PIN 16 GND = PIN 8 \bigcirc = PIN NUMBERS

LOGIC DIAGRAMS (continued)

FUNCTIONAL DESCRIPTION

The LS192 and LS193 are Asynchronously Presettable Decade and 4-Bit Binary Synchronous UP/DOWN (Reversable) Counters. The operating modes of the LS192 decade counter and the LS193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW.

The Terminal Count Up (TC_U) and Terminal Count Down (TC_D) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the LS192, 15 for the LS193), the next HIGH-to-LOW transition of the Count Up Clock will cause TC_U to go LOW. TC_U will stay LOW until CP_U goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the TC_D output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

Each circuit has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load (PL) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs (P0, P3) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.

MODE SELECT TABLE

MR	PL	CPU	CPD	MODE
Н	X	Х	Х	Reset (Asyn.)
L	L	X	X	Preset (Asyn.)
L	Н	Н	Н	No Change
L	Н	Г	Н	Count Up
L	Н	H	ſ	Count Down

L = LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits						
Symbol	Parameter		Min	Тур	Max	Unit	Tes	st Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	HIGH Voltage for	
\/	Input I OW Voltage	54			0.7	V	Guaranteed Input	LOW Voltage for	
VIL	Input LOW Voltage	74			0.8	, v	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
V			2.5	3.5	. 3	V	VCC = MIN, IOH	= MAX, V _{IN} = V _{IH}	
VOH	Output HIGH Voltage	74	2.7	3 .5	L	V	or V _{IL} per Truth Table		
M	Output I OW Valtage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}	
V _{OL}	Output LOW Voltage	74	1	0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
t	Innut I II Cl I Current				20	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V	
ΊΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _I L	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current				34	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Clock Frequency	25	32		MHz	
tPLH tPHL	CPU Input to TCU Output		17 18	26 24	ns	
tPLH tPHL	CPD Input to TCD Output		16 15	24 24	ns	V _{CC} = 5.0 V C _L = 15 pF
^t PLH ^t PHL	Clock to Q		27 30	38 47	ns	C _L = 15 pF
^t PLH ^t PHL	PL to Q		24 25	40 40	ns	
^t PHL	MR Input to Any Output		23	35	ns	

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Any Pulse Width	20			ns	
t _S	Data Setup Time	20			ns	V 50V
t _h	Data Hold Time	5.0			ns	V _{CC} = 5.0 V
t _{rec}	Recovery Time	40			ns	

DEFINITIONS OF TERMS

SETUP TIME (t_S) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the PL transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (th) is defined as the minimum time following the PL transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recogni-

tion. A negative HOLD TIME indicates that the correct logic level may be released prior to the PL transition from LOW-to-HIGH and still be recognized.

RECOVERY TIME (trec) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

AC WAVEFORMS

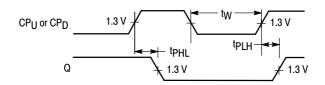
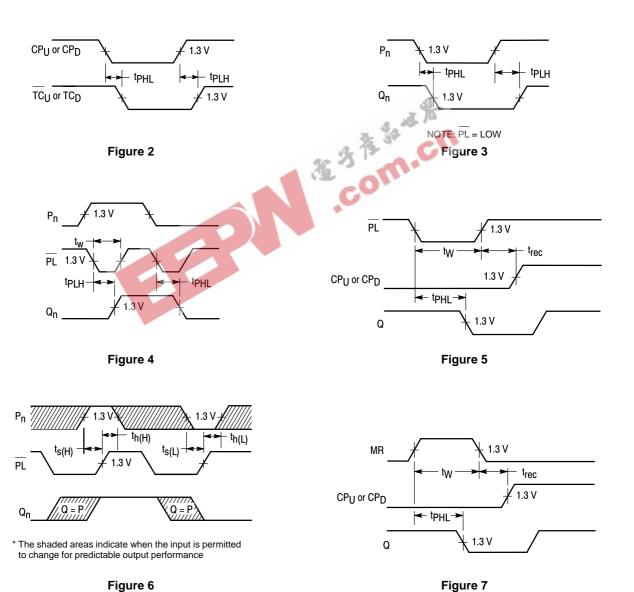
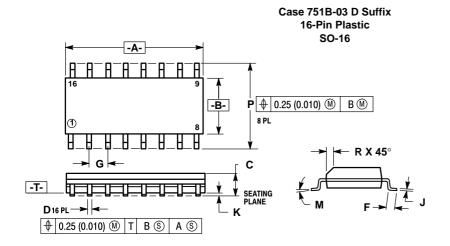
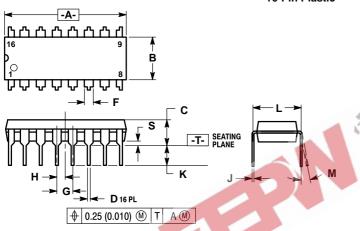




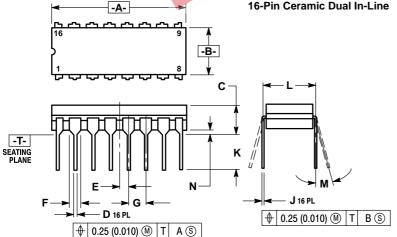
Figure 1


FAST AND LS TTL DATA

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
- 751B-01 IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Case 648-08 N Suffix 16-Pin Plastic



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

tix						
	NOTES:					
	1. DIMENS	SIONING	AND TOL	ERANCIN	IG PER A	NSI
	Y14.5M	, 1982.				
	CONTR	OLLING I	DIMENSIO	DN: INCH		
	DIMENS	SION "L" 1	O CENTI	ER OF LE	ADS WH	EN
	FORME	D PARAL	LEL.			
	DIMENS	SION "B" I	DOES NO	T INCLUI	DE MOLD)
	FLASH.					
	5. ROUNE	ED CORI	NERS OP	TIONAL.		
and the same of th	6. 648-01	THRU -07	OBSOLE	TE, NEW	STANDA	ARD
4.*	648-08.					
3- 37						,
a Alle			ETERS		HES	
1/2	DIM	MIN	MAX	MIN	MAX	
30 13	A	18.80	19.55	0.740	0.770	1
100	В	6.35	6.85	0.250	0.270	
	С	3.69	4.44	0.145	0.175	
	D	0.39	0.53	0.015	0.021	
	F	1.02	1.77	0.040	0.070	
	G	2.54	BSC	0.100	BSC	
	Н	1.27	BSC	0.050	BSC	
	J	0.21	0.38	0.008	0.015	
	К	2.80	3.30	0.110	0.130	
	L	7.50	7.74	0.295	0.305	
	М	0°	10°	0°	10°	1
	S	0.51	1.01	0.020	0.040	1

Case 620-09 J Suffix 16-Pin Ceramic Dual In-Line

NOTES:

- OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD CO.00.0.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MIN MAX		MAX	
Α	19.05	19.55	0.750	0.770	
В	6.10	7.36	0.240	0.290	
С	_	4.19	_	0.165	
D	0.39	0.53	0.015	0.021	
E	1.27	BSC	0.050 BSC		
F	1.40	1.77	0.055	0.070	
G	2.54 BSC		0.100 BSC		
J	0.23	0.27	0.009	0.011	
K	_	5.08	_	0.200	
L	7.62	BSC	0.300	BSC	
M	0°	15°	0°	15°	
N	0.39	0.88	0.015	0.035	
L M	0°	BSC 15°	0°	BSC 15°	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "" are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

