INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT2834-bit binary full adder with fast carry

Product specification
File under Integrated Circuits, IC06

December 1990

4-bit binary full adder with fast carry

74HC/HCT283

FEATURES

• High-speed 4-bit binary addition

• Cascadable in 4-bit increments

· Fast internal look-ahead carry

· Output capability: standard

· I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT283 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT283 add two 4-bit binary words (A_n plus B_n) plus the incoming carry. The binary sum appears on the sum outputs (Σ_1 to Σ_4) and the out-going carry (C_{OUT}) according to the equation:

$$\begin{split} &C_{IN} + (A_1 + B_1) + 2(A_2 + B_2) + + 4(A_3 + B_3) + 8(A_4 + B_4) = \\ &= \Sigma_1 + 2\Sigma_2 + 4\Sigma_3 + 8\Sigma_4 + 16C_{OUT} \end{split}$$

Where (+) = plus.

Due to the symmetry of the binary add function, the "283" can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic); see function table. In case of all active LOW operands the results Σ_1 to Σ_4 and C_{OUT} should be interpreted also as active LOW. With active HIGH inputs, C_{IN} must be held LOW when no "carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus $C_{IN},\,A_1,\,B_1$ can be assigned arbitrarily to pins 5, 6, 7, etc.

See the "583" for the BCD version.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIDOL	PARAIVIETER	CONDITIONS	нс	нст	Oldi	
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V				
	C_{IN} to Σ_1		16	15	ns	
	C_{IN} to Σ_2		18	21	ns	
	C_{IN} to Σ_3		20	23	ns	
	C_{IN} to Σ_4		23	27	ns	
	A_n or B_n to Σ_n		21	25	ns	
	C _{IN} to C _{OUT}		20	23	ns	
	A_n or B_n to C_{OUT}		20	24	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	88	92	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

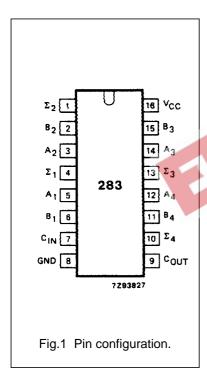
C_L = output load capacitance in pF

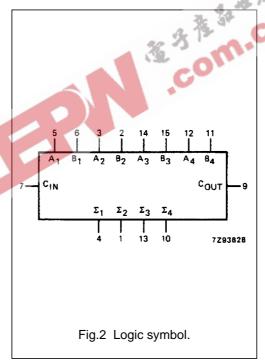
V_{CC} = supply voltage in V

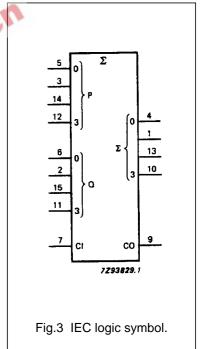
2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 V$

4-bit binary full adder with fast carry

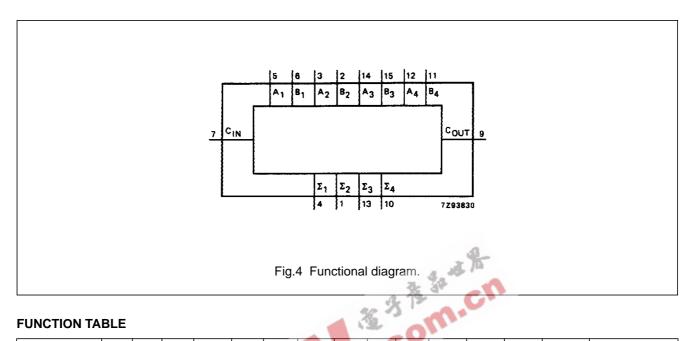

74HC/HCT283


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4, 1, 13, 10	Σ_1 to Σ_4	sum outputs
5, 3, 14, 12	A ₁ to A ₄	A operand inputs
6, 2, 15, 11	B ₁ to B ₄	B operand inputs
7	C _{IN}	carry input
8	GND	ground (0 V)
9	C _{OUT}	carry output
16	V _{CC}	positive supply voltage



Philips Semiconductors Product specification

4-bit binary full adder with fast carry

74HC/HCT283

FUNCTION TABLE

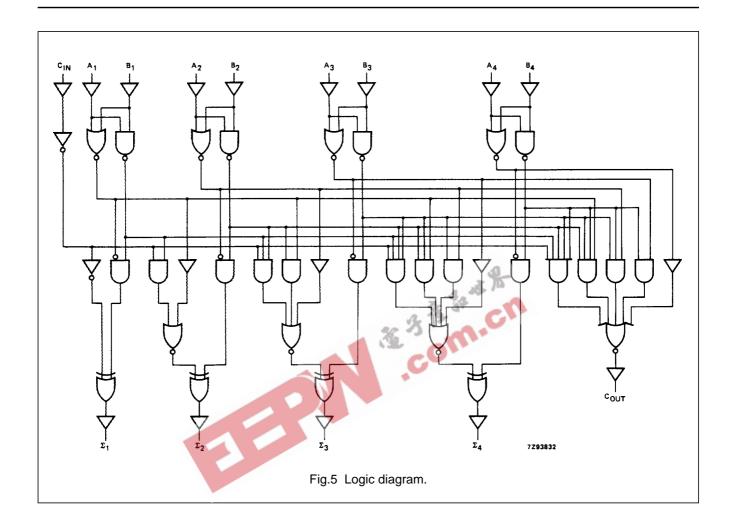
PINS	C _{IN}	A ₁	A ₂	A ₃	A ₄	B ₁	B ₂	B ₃	B ₄	Σ_1	Σ_2	Σ_3	Σ_4	C _{OUT}	EXAMPLE ⁽²⁾
logic levels	L	L	Н	Г	Н	Н	7		Н	Н	Н	L	L	Н	
active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1	(3)
active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0	(4)

Note

- 1. H = HIGH voltage level L = LOW voltage level
- 2. example

1001

1010


10011

- 3. for active HIGH, example = (9 + 10 = 19)
- 4. for active LOW, example = (carry + 6 + 5 = 12)

Philips Semiconductors Product specification

4-bit binary full adder with fast carry

74HC/HCT283

Philips Semiconductors Product specification

4-bit binary full adder with fast carry

74HC/HCT283

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (TEST CONDITIONS				
0)/11501					74H0	UNIT					
SYMBOL	PARAMETER	+25			- 40 f	to +85	-40 t	-40 to +125		V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(')	
t _{PHL} / t _{PLH}	propagation delay		52	160		200		240	ns	2.0	Fig.6
	C_{IN} to Σ_1		19	32		40	4.	48		4.5	
			15	27		34	1 ar	41		6.0	
t _{PHL} / t _{PLH}	propagation delay		58	180	4	225	-	270	ns	2.0	Fig.6
	C_{IN} to Σ_2		21	36		45		54		4.5	
			17	31		38	0.	46		6.0	
t _{PHL} / t _{PLH}	propagation delay		63	195		245		295	ns	2.0	Fig.6
	C_{IN} to Σ_3		23	39		49		59		4.5	
			18	33	,	42		50		6.0	
t _{PHL} / t _{PLH}	propagation delay		74	230		290		345	ns	2.0	Fig.6
	C_{IN} to Σ_4		27	46		58		69		4.5	
			22	39		49		59		6.0	
t _{PHL} / t _{PLH}	propagation delay		69	210		265		315	ns	2.0	Fig.6
	A_n or B_n to Σ_n		25	42		53		63		4.5	
			20	36		45		54		6.0	
t _{PHL} / t _{PLH}	propagation delay		63	195		245		295	ns	2.0	Fig.6
	C _{IN} to C _{OUT}		23	39		49		59		4.5	
			18	33		42		50		6.0	
t _{PHL} / t _{PLH}	propagation delay		63	195		245		295	ns	2.0	Fig.6
	A _n or B _n to C _{OUT}		23	39		49		59		4.5	
	55.		18	33		42		50		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.6
,			7	15		19		22		4.5	
			6	13		16		19		6.0	

Philips Semiconductors Product specification

4-bit binary full adder with fast carry

74HC/HCT283

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

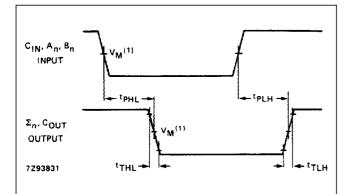
Output capability: standard

I_{CC} category: MSI

Note to HCT types

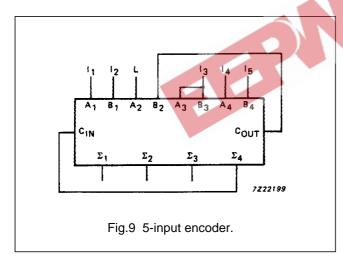
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
C _{IN}	1.50
B ₂ , A ₂ , A ₁	1.00
B ₁	0.40
B ₄ , A ₄ , A ₃ , B ₃	0.50


AC CHARACTERISTICS FOR 74HCT

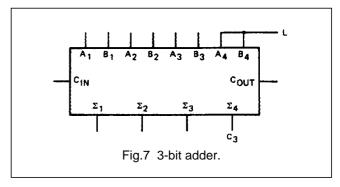
C _{IN} B ₂ , A ₂ , A ₁	1.50 1.00							4				
B ₁	0.40							2 /5				
B ₄ , A ₄ , A ₃ ,	B ₃ 0.50		Com.cn									
	CTERISTICS FOR 74F $t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pl}$				18	5 B	om	.C.				
				11	T _{amb} (°C)				TES	T CONDITIONS	
OVMDOL	DADAMETED		74HCT									
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.	1	(,,		
t _{PHL} / t _{PLH}	propagation delay C_{IN} to Σ_1		18	31		39		47	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay C_{IN} to Σ_2		25	43		54		65	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay C_{IN} to Σ_3		27	46		58		69	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay C_{IN} to Σ_4		31	53		66		80	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay A_n or B_n to Σ_n		29	49		61		74	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay C _{IN} to C _{OUT}		27	46		58		69	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay A _n or B _n to C _{OUT}		28	48		60		72	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	

4-bit binary full adder with fast carry


74HC/HCT283

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.


Fig.6 Waveforms showing the inputs (C_{IN}, A_n, B_n) to the outputs (\sum_n, C_{OUT}) propagation delays and the output transition times.

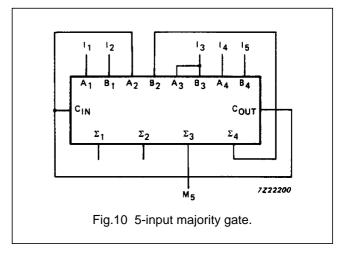

Notes to Figs 7 to 10

Figure 7 shows a 3-bit adder using the "283". Tying the operand inputs of the fourth adder $(A_3,\,B_3)$ LOW makes Σ_3 dependent on, and equal to, the carry from the third adder. Based on the same principle, Figure 8 shows a method of dividing the "283" into a 2-bit and 1-bit adder. The third stage adder $(A_2,\,B_2,\,\Sigma_2)$ is used simply as means of transferring the carry into the fourth stage (via A_2 and $B_2)$ and transferring the carry from the second stage on Σ_2 . Note that as long as long as A_2 and B_2 are the same, HIGH or LOW, they do not influence Σ_2 . Similarly, when A_2 and B_2 are the same, the carry into the third stage does not influence the carry out of the third stage. Figure 9 shows a method of implementing a 5-input encoder, where the

APPLICATION INFORMATION

inputs are equally weighted. The outputs Σ $_0,$ Σ_1 and Σ $_2$ produce a binary number equal to the number inputs (I $_1$ to I $_5$) that are HIGH. Figure 10 shows a method of implementing a 5-input majority gate. When three or more inputs (I $_1$ to I $_5$) are HIGH, the output M $_5$ is HIGH.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".