Data sheet acquired from Harris Semiconductor SCHS165E September 1997 - Revised October 2003 # High-Speed CMOS Logic 4-Bit Parallel Access Register ### **Features** - · Asynchronous Master Reset - J, K, (D) Inputs to First Stage - Fully Synchronous Serial or Parallel Data Transfer - . Shift Right and Parallel Load Capability - Complementary Output From Last Stage - Buffered Inputs - Typical $f_{MAX} = 50MHz$ at $V_{CC} = 5V$, $C_L = 15pF$, $T_A = 25^{\circ}C$ - Fanout (Over Temperature Range) - Wide Operating Temperature Range ... -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V ### Description The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds. The two modes of operation, shift right (Q₀-Q₁) and parallel load, are controlled by the state of the Parallel Enable (\overline{PE}) input. Serial data enters the first flip-flop (Q₀) via the J and \overline{K} inputs when the \overline{PE} input is high, and is shifted one bit in the direction Q₀-Q₁-Q₂-Q₃ following each Low to High clock transition. The J and \overline{K} inputs provide the flexibility of the JK-type input for special applications and by tying the two pins together, the simple D-type input for general applications. The device appears as four common-clocked D flip-flops when the \overline{PE} input is Low. After the Low to High clock transition, data on the parallel inputs (D0-D3) is transferred to the respective Q₀-Q₃ outputs. Shift left operation (Q₃-Q₂) can be achieved by tying the Q_n outputs to the Dn-1 inputs and holding the \overline{PE} input low. All parallel and serial data transfers are synchronous, occurring after each Low to High clock transition. The 'HC195 series utilizes edge triggering; therefore, there is no restriction on the activity of the J, \overline{K} , Pn and \overline{PE} inputs for logic operations, other than set-up and hold time requirements. A Low on the asynchronous Master Reset (\overline{MR}) input sets all Q outputs Low, independent of any other input condition. ### Ordering Information | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | |--------------|---------------------|--------------| | CD54HC195F3A | -55 to 125 | 16 Ld CERDIP | | CD74HC195E | -55 to 125 | 16 Ld PDIP | | CD74HC195M | -55 to 125 | 16 Ld SOIC | | CD74HC195NSR | -55 to 125 | 16 Ld SOP | | CD74HC195PW | -55 to 125 | 16 Ld TSSOP | | CD74HC195PWR | -55 to 125 | 16 Ld TSSOP | | CD74HC195PWT | -55 to 125 | 16 Ld TSSOP | NOTE: When ordering, use the entire part number. The suffix R denotes tape and reel. The suffix T denotes a small-quantity reel of 250. #### **PInout** CD54HC195 (CERDIP) CD74HC195 (PDIP, SOIC, SOP, TSSOP) TOP VIEW ### Functional Diagram ### TRUTH TABLE | | INPUTS | | | | | ОИТРИТ | | | | | | | |---------------------------|--------|----|----|----|---|--------|----------------|----------------|----------------|----------------|------------------|--| | OPERATING MODES | MR | СР | PE | J | K | Dn | Q_0 | Q ₁ | Q_2 | Q_3 | \overline{Q}_3 | | | Asynchronous Reset | L | Х | Х | X | X | X | L | L | L | L | Н | | | Shift, Set First Stage | Н | 1 | h | h | h | Х | Н | q ₀ | q ₁ | q_2 | \bar{q}_2 | | | Shift, Reset First Stage | Н | 1 | h | 71 | | Х | L | q ₀ | q ₁ | q ₂ | \bar{q}_2 | | | Shift, Toggle First Stage | Н | 1 | h | h | I | Х | \bar{q}_0 | q ₀ | q ₁ | q ₂ | \bar{q}_2 | | | Shift, Retain First Stage | Н | 1 | h | ı | h | Х | q ₀ | q ₀ | q ₁ | q ₂ | \bar{q}_2 | | | Parallel Load | Н | 1 | ı | Х | Х | dn | d ₀ | d ₁ | d ₂ | d3 | d2 | | H = High Voltage Level L = Low Voltage Level, X = Don't Care ↑ = Transition from Low to High Level I = Low Voltage Level One Set-up Time Prior to the Low to High Clock Transition h = Low Voltage Level One Set-up Time prior to the High to Low Clock Transition, $dn (q_n) = Lower Case Letters Indicate the State of the Referenced Input (or output) One Set-up Time Prior to the Low to High Clock$ Transition. ### **Absolute Maximum Ratings** ### DC Supply Voltage, V_{CC}-0.5V to 7V DC Input Diode Current, I_{IK} ### **Thermal Information** | Package Thermal Impedance, θ _{JA} (see Note 1): | |--| | E (PDIP) Package67°C/W | | M (SOIC) Package73°C/W | | NS (SOP) Package | | PW (TSSOP) Package 108°C/W | | Maximum Junction Temperature | | Maximum Storage Temperature Range65°C to 150°C | | Maximum Lead Temperature (Soldering 10s)300°C | | (SOIC - Lead Tips Only) | ### **Operating Conditions** | Temperature Range (T _A)55°C to 125°C | |---| | Supply Voltage Range, V _{CC} | | HC Types2V to 6V | | HCT Types | | DC Input or Output Voltage, V _I , V _O | | Input Rise and Fall Time | | 2V | | 4.5V 500ns (Max) | | 6V | | | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. The package thermal impedance is calculated in accordance with JESD 51-7. Electrical Specifications ### **DC Electrical Specifications** | | | TES
CONDI | | | | 25°C | | -40°C 1 | O 85°C | -55 ⁰ C T | O 125°C | | |-----------------------------|-----------------|------------------------------------|---------------------|---------------------|------|------|------|---------|--------|----------------------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | High Level Input | V _{IH} | | | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | Voltage | | 1 | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | ٧ | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | ٧ | | Low Level Input | V _{IL} | - | - | 2 | ı | - | 0.5 | - | 0.5 | i | 0.5 | V | | Voltage | | | | 4.5 | ı | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | 6 | ı | - | 1.8 | - | 1.8 | - | 1.8 | V | | High Level Output | VoH | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | Cimoo Loddo | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | High Level Output | | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | TTE Education | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | OWICO LOGGO | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output | 1 | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | TTE LOads | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | II | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | lcc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μА | ### **Prerequisite For Switching Function** | | | TEST | | 25 | °С | -40°C T | O 85°C | -55°C TO 125°C | | | |--|------------------|------------|---------------------|-----|------|---------|--------|----------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | Clock Frequency | f _{MAX} | - | 2 | 6 | - | 5 | - | 4 | - | MHz | | | | | 4.5 | 30 | - | 25 | - | 20 | - | MHz | | | | | 6 | 35 | - | 29 | - | 23 | - | MHz | | MR Pulse Width | t _w | - | 2 | 80 | - | 100 | - | 120 | - | ns | | | | | 4.5 | 16 | - | 20 | - | 24 | - | ns | | | | | 6 | 14 | - | 17 | - | 20 | - | ns | | Clock Pulse Width | t _w | - | 2 | 80 | - | 100 | - | 120 | - | ns | | | | | 4.5 | 16 | - | 20 | - | 24 | - | ns | | | | | 6 | 14 | - | 17 | - | 20 | - | ns | | Set-up Time | tsu | - | 2 | 100 | - | 125 | - | 150 | - | ns | | J, \overline{K} , \overline{PE} to Clock | | | 4.5 | 20 | - | 25 | - | 30 | - | ns | | | | | 6 | 17 | - | 21 | - | 26 | - | ns | | Hold Time | t _H | - | 2 | 3 | - | 3 | - | 3 | - | ns | | J, \overline{K} , \overline{PE} to Clock | | | 4.5 | 3 | 4,3 | 3 | - | 3 | - | ns | | | | | 6 | 5 | 8 30 | 3 | - | 3 | - | ns | | Removal Time, | t _{REM} | - | 2 | 80 | -A1 | 100 | - | 120 | - | ns | | MR to Clock | | | 4.5 | 16 | 3/2 | 20 | - | 24 | - | ns | | | | | 6 | 14 | - | 17 | - | 20 | - | ns | ### Switching Specifications Input $t_{\text{r}},\,t_{\text{f}}=6\text{ns}$ | | | TEST | | 25 | °C | -40°C TO 85°C | -55°C TO 125°C | | |---|-------------------------------------|-----------------------|---------------------|-----|-----|---------------|----------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | TYP | MAX | MAX | MAX | UNITS | | HC TYPES | | | | | | | | | | Propagation Delay, CP to | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | ı | 175 | 220 | 265 | ns | | Output | | | 4.5 | - | 35 | 44 | 53 | ns | | | | | 6 | - | 30 | 37 | 45 | ns | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | 150 | 190 | 225 | ns | | MR toOutput | | | 4.5 | - | 30 | 38 | 45 | ns | | | | | 6 | - | 26 | 33 | 38 | ns | | Output Transition Times | t _{TLH} , t _{THL} | C _L = 50pF | 2 | = | 75 | 95 | 110 | ns | | (Figure 1) | | | 4.5 | - | 15 | 19 | 22 | ns | | | | | 6 | - | 13 | 16 | 19 | ns | | Input Capacitance | C _{IN} | - | - | = | 10 | 10 | 10 | pF | | CP to Q _n Propagation Delay | t _{PLH} , t _{PHL} | C _L = 15pF | 5 | 14 | - | - | - | ns | | MR to Q _n | t _{PHL} | C _L = 15pF | 5 | 13 | - | - | - | ns | | Maximum Clock Frequency | f _{MAX} | C _L = 15pF | 5 | 50 | - | - | - | MHz | | Power Dissipation
Capacitance (Notes 2, 3) | C _{PD} | C _L = 15pF | | 45 | - | - | - | pF | - 2. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per flip-flop. - 3. $P_D = V_{CC}^2 f_i + \sum (C_L V_{CC}^2 + f_O)$ where $f_i = I_D$ ### Test Circuit and Waveforms FIGURE 1. CLOCK PREREQUISITE AND PROPAGATION DELAYS AND OUTPUT TRANSITION TIMES FIGURE 2. MASTER RESET PREREQUISITE AND PROPAGATION DELAYS FIGURE 3. J, K, OR PARALLEL ENABLE PREREQUISITE TIMES 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - $E. \quad \text{Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.} \\$ ## N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### D (R-PDSO-G16) ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-012 variation AC. ### **MECHANICAL DATA** ### NS (R-PDSO-G**) ### 14-PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ### PW (R-PDSO-G**) ### PLASTIC SMALL-OUTLINE PACKAGE ### 14 PINS SHOWN NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | | | | | | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated