# KA9258D(KA9258CD) ## **4-Channel Motor Driver** ### **Features** - 4-CH Balanced Transformerless(BTL) Driver - Output Gain Adjustable - Built in OP-Amplifier - Built in Mute Function - Built in Thermal Shutdown Circuit (TSD) - Operating Range 6 ~ 13.2V ### **Description** The KA9258D is a monolithic integrated circuit, suitable for 4-CH motor driver which drives tracking actuator, focus actuator, sled motor and spindle motor of compack disk player system. ### **Typical Applications** - Compact Disk Player (CDP) - Video Compact Disk Player (VCD) - · Automotive Compact Disk Player - · Other Compact Disk Media ### **Ordering Information** | Device | Package | Operating Temp. | |------------|--------------|-----------------| | KA9258CD | 28-SSOPH-375 | -40°C ~ +85°C | | KA9258CDTF | 28-SSOPH-375 | -40°C ~ +85°C | ### **Pin Assignments** ## **Pin Definitions** | Pin Number | Pin Name | I/O | Pin Function Description | |------------|----------|-----|---------------------------------------| | 1 | DO1.1 | 0 | Channel 1 output 1 | | 2 | DO1.2 | 0 | Channel 1 output 2 | | 3 | DI1.1 | I | Channel 1 input 1 | | 4 | DI1.2 | I | Channel 1 input 2 | | 5 | REG | 0 | External transistor base drive output | | 6 | REO | 0 | Regulator output | | 7 | MUTE | I | Mute signal input | | 8 | GND1 | - | Ground 1 | | 9 | DI2.1 | I | Channel 2 output 1 | | 10 | DI2.2 | I | Channel 2 output 2 | | 11 | DO2.1 | 0 | Channel 2 input 1 | | 12 | DO2.2 | 0 | Channel 2 input 2 | | 13 | GND2 | - | Ground 2 | | 14 | OPOUT | 0 | OP-amplifier output | | 15 | OPIN(-) | I | OP-amplifier negative input | | 16 | OPIN(+) | I | OP-amplifier positive input | | 17 | DO3.1 | 0 | Channel 3 output 1 | | 18 | DO3.2 | 0 | Channel 3 output 2 | | 19 | DI3.1 | I | Channel 3 input 1 | | 20 | DI3.2 | 1 | Channel 3 input 2 | | 21 | VCC1 | - | Power supply voltage 1 | | 22 | VCC2 | | Power supply voltage 2 | | 23 | VREF | | Bias Voltage | | 24 | DI4.1 | | Channel 4 input 1 | | 25 | DI4.2 | ı | Channel 4 input 2 | | 26 | DO4.1 | 0 | Channel 4 output 1 | | 27 | DO4.2 | 0 | Channel 4 output 2 | | 28 | GND3 | - | Ground 3 | ## **Internal Block Diagram** ## **Equivalent Circuits** ### **Equivalent Circuits** (Continued) ## Absolute Maximum Ratings (Ta = 25°C) | Parameter | Symbol | Value | Unit | |------------------------|--------|---------------------|------| | Supply Voltage | Vcc | 15 | V | | Power Dissipation | PD | 1.7 <sup>note</sup> | W | | Operating Temperature | TOPR | -40 ~ +85 | °C | | Storage Temperature | Tstg | -55 ~ <b>+</b> 150 | °C | | Maximum Output Current | IOMAX | 1 | Α | #### Note: - 1. When mounted on 76.2mm $\times$ 114mm $\times$ 1.57mm PCB (Phenolic resin material). - 2. Power dissipation reduces 13.6mW/°C for using above Ta=25°C - 3. Do not exceed Pd and SOA (Safe Operating Area). ## **Power Dissipation Curve** ## Recommended Operating Condition (Ta = 25°C) | Parameter | | Symbol | Value | Unit | |--------------------------|--|--------|----------|------| | Operating Supply Voltage | | Vopr | 6 ~ 13.2 | V | ## **Electrical Characteristics (Ta = 25°C)** (Ta=25°C, VCC=8V, RL=8 $\Omega$ , f=1kHz, unless otherwise specified) | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | | |-----------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-------|------|------|------|--|--| | REGULATOR PART | | | | | | | | | | Regulator Output Voltage | VREG | IL=100mA | 4.75 | 5 | 5.25 | V | | | | Load Regulation | $\Delta V_{RL}$ | IL=0 ~ 200mA | -40.0 | 0 | 10.0 | mV | | | | Line Regulation | ΔVCC | IL=200mA, VCC=6 ~ 9V | -10.0 | 0 | 20.0 | mV | | | | DRIVER PART (EXCEPT FOR LOADING MOTOR DRIVER) | | | | | | | | | | Quiescent Circuit Current | ICCQ | VI = 0 | 5.5 | 9.5 | 13.5 | mA | | | | Input Offset Voltage (Note1) | Vof | - | -5.0 | 0 | 5.0 | mV | | | | Output Offset Voltage | Voo | V <sub>C</sub> C= 13V | -50 | 0 | 50 | IIIV | | | | Maximum Sink Current | ISINK | RL= 4Ω, VCC | 0.5 | 0.8 | - | ۸ | | | | Maximum Source Current | ISOURCE | RL= 4Ω, GND | 0.5 | 0.8 | - | A | | | | Maximum Output Voltage | Vом | V <sub>I</sub> = 2V <sub>RMS</sub> , 1kHz | 2.5 | 3.0 | - | V | | | | Closed Loop Voltage Gain | AVF | VI = 0.1VRMS, 1kHz | 4.5 | 6.5 | 7.5 | dB | | | | Ripple Rejection Ratio (Note1) | RR | V <sub>I</sub> = -20dB, 120Hz | 60.0 | 80.0 | - | uБ | | | | Slew Rate (Note1) | SR | 100Hz, Square wave | 1.0 | 2.0 | - | V/μs | | | | LOADING MOTOR DRIVER PART (L | LOADING MOTOR DRIVER PART (UNLESS OTHERWISE SPECIFIED, VCTL=OPENED) | | | | | | | | | Input Offset Voltage | VOF1 | 237 | -5 | - | +5 | mA | | | | Input Bias Current | l <sub>B1</sub> | 132 | - | - | 300 | nA | | | | High Level Output Voltage | VOH1 | C | 6 | - | - | V | | | | Low Level Output Voltage | VOL1 | - | - | - | 1.8 | V | | | | Output Sink Current | ISINK1 | RL= 50Ω, GND | 10 | 40 | - | mA | | | | Output Source Current | ISOURCE1 | RL= 50Ω, VCC | 10 | 50 | - | mA | | | | Open Loop Voltage Gain | GVO1 | V <sub>IN</sub> = -75dB, f =1kHz | 65 | 78 | - | dB | | | | Ripple Rejection Ratio (Note1) | RR1 | V <sub>IN</sub> = -20dB, f =120kHz | 50 | 70 | - | dB | | | | Slew Rate (Note1) | SR1 | Square, V <sub>OUT</sub> = 2Vp-p,<br>f = 120kHz | 0.5 | 1 | - | V/μs | | | | Common Mode Rejection Ratio | CMRR1 | VIN = -20dB, f =1kHz | 70 | 84 | - | dB | | | ### Note: 1. Guranteed Design Value ### **Application Information** #### 1. Mute Function | Pin 7 | Mute circuit | |-------|--------------| | High | Mute-off | | Low | Mute-on | | Open | Mute-on | • When the mute (pin 7) is high level, the bias circuit of BTL driver is activated. On the other hand, when the mute (pin 7) is open or low level, the bias circuit of BTL driver is disabled. So that the 4-channels BTL driver output circuit will be muted. ### 2. TSD (Thermal Shutdown) Function - The V<sub>REF</sub> <sub>BG</sub> is the output voltage of the band-gap-referenced biasing circuit and acts as the input voltage of the TSD circuit. - The base-emitter voltage of the transistor, Q11 is designed to turn-on at below voltage. $$V_{BE} = \frac{V_{REFBG} \times R12}{R11 + R12} = 460[mV]$$ • When the chip temperature rises up to 175°C, then the turn-on voltage of the Q11 would drop down to 460mV. Hence, the Q11 would turn on so the output circuit will be muted. The TSD circuit has the hysteresis temperature of 25°C. #### 3. OP-AMP • General OP-amplifier is integrated in the IC for user's convenience. #### 4. Balanced Transformerless(BTL) Driver - The voltage, VREF, is the reference voltage given by the bias voltage of the pin #23. - The input signal through the pin #3 is amplified by 10K/10K times and then fed to the level shift. - The level shift produces the current due to the difference between the input signal and the arbitrary reference signal. The current produced as $+\Delta I$ and $-\Delta I$ is fed into the driver buffer. - Driver Buffer operates the power transistor of the output stage according to the state of the input signal. - The output stage is the BTL driver and the motor is rotating in forward direction by operating transistor Q1 and Q4. On the other hand, if transistor Q2 and Q3 is operating, the motor is rotating in reverse direction - When the input voltage through the pin #3 is below the V<sub>REF</sub>, then the direction of the motor in forward direction. - When the input voltage through the pin #3 is above the V<sub>REF</sub>, then the direction of the motor in reverse direction. - If it is desired to change the gain, then the pin #4 or #24 can be used. ### 5. Connect a by-pass capacitor, $0.1\mu F$ between the supply voltage source. • Radiation FIN is connecting to the internal GND of the package. Connect the FIN to the external GND. ## **Typical Performance Characteristics** • Test contrions: VREF=2.5[V], Mute: OFF ### **Test Circuits** ## **Application Circuits** #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com