December 2007

FAIRCHILD

SEMICONDUCTOR

FDS8672S N-Channel PowerTrench[®] SyncFET[™] **30V, 18A, 4.8m**Ω

Features

- Max $r_{DS(on)} = 4.8 m\Omega$ at $V_{GS} = 10V$, $I_D = 18A$
- Max $r_{DS(on)} = 7.0 m\Omega$ at $V_{GS} = 4.5 V$, $I_D = 15 A$
- Includes SyncFET Schottky body diode
- High performance trench technology for extremely low r_{DS(on)} and fast switching
- High power and current handling capability
- 100% R_q (Gate Resistance) tested
- Termination is Lead-free and RoHS Compliant

General Description

The FDS8672S is designed to replace a single MOSFET and Schottky diode in synchronous DC/DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $r_{\text{DS}(\text{on})}$ and low gate charge. The FDS8672S includes a patented combination of a MOSFET monolithically integrated with a Schottky diode using Fairchild's monolithic SyncFET technology.

S

S

Application

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore low side switch
- Point of load low side switch

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous			18	Α	
D	-Pulsed	80				
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	216	mJ	
D	Power Dissipation	$T_A = 25^{\circ}C$	(Note 1a)	2.5	W	
P _D	Power Dissipation	$T_A = 25^{\circ}C$	(Note 1b)	1.0	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

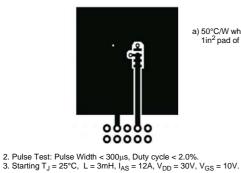
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	C/VV

Package Marking and Ordering Information

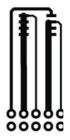
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS8672S	FDS8672S	SO8	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 1mA, V_{GS} = 0V$	30			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to 25	5°C	33		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V, V_{GS} = 0V$			500	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1mA$	1.0	2.1	3.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 10$ mA, referenced to 25	5°C	-5		mV/°C	
		$V_{GS} = 10V, I_{D} = 18A$		3.8	4.8		
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5 V$, $I_{D} = 15 A$		5.3	7.0	mΩ	
		$V_{GS} = 10V, I_D = 18A, T_J = 100$	125°C	5.3	7.8		
9fs	Forward Transconductance	$V_{DS} = 5V, I_{D} = 18A$		78		S	
Dynamic	Characteristics		2				
C _{iss}	Input Capacitance		16 M	2005	2670	pF	
C _{oss}	Output Capacitance	$-V_{DS} = 15V, V_{GS} = 0V,$ -f = 1MHz		985	1310	pF	
C _{rss}	Reverse Transfer Capacitance			135	205	pF	
Rg	Gate Resistance	f = 1MHz		0.6	2.0	Ω	
Switching	g Characteristics	COT					
t _{d(on)}	Turn-On Delay Time			12	22	ns	
t _r	Rise Time	$V_{DD} = 15V, I_D = 18A,$		4	10	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		26	42	ns	
t _f	Fall Time			3	10	ns	
Qg	Total Gate Charge	$V_{GS} = 0V$ to 10V		29	41	nC	
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 15$ $I_D = 18A$	ov,	15	21	nC	
Q _{gs}	Gate to Source Charge	ID = 10A	`	5.5		nC	
~	Cata ta Drain "Millor" Charge			27		-	

Drain-Source Diode Characteristics


Gate to Drain "Miller" Charge

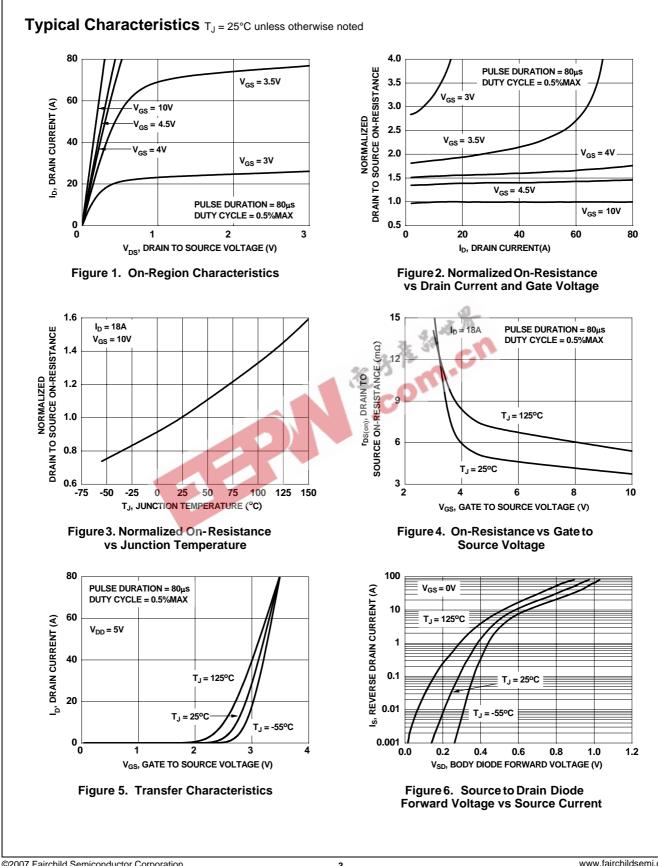
V	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 18A	0.8	1.2	V
V _{SD}	Source to Drain Diode Porward Voltage	$V_{GS} = 0V, I_{S} = 1.8A$	0.4	0.7	v
t _{rr}	Reverse Recovery Time	I _F = 18A, di/dt = 300A/μs	27	43	ns
Q _{rr}	Reverse Recovery Charge	$F = 10A$, $a/at = 300A/\mu s$	31	50	nC


NOTES:

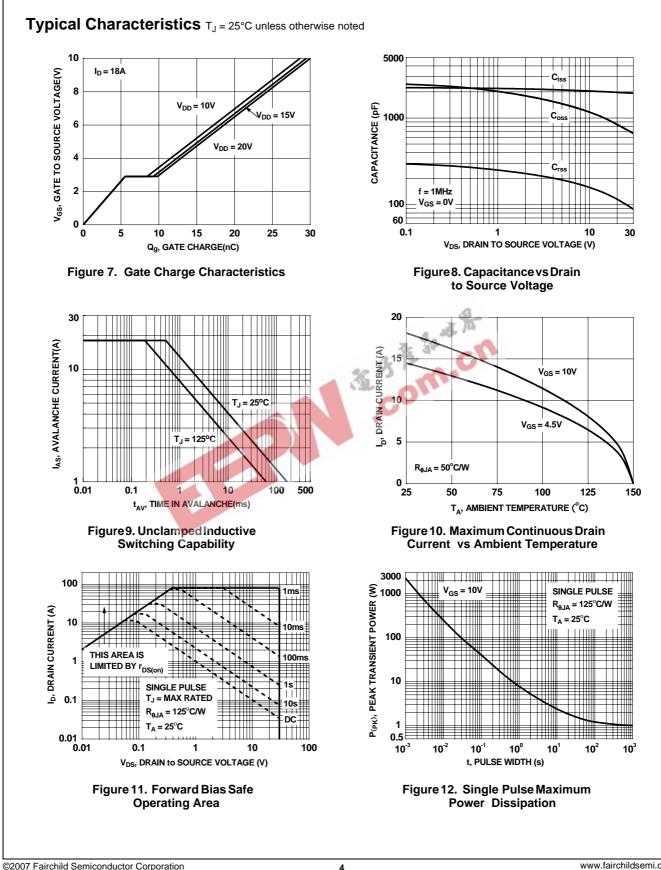
 Q_{gd}

1. $R_{\theta JA}$ is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

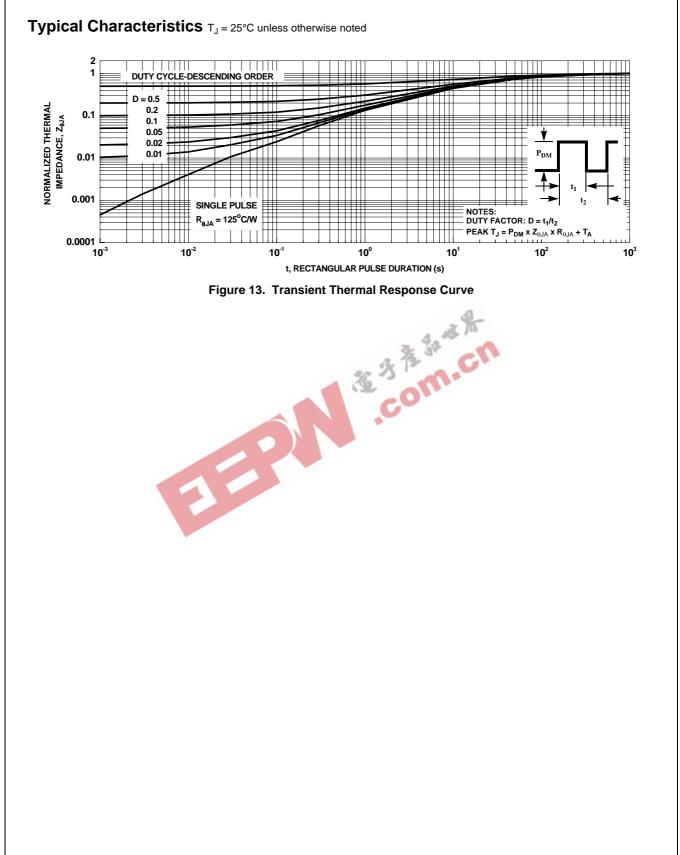
a) 50°C/W when mounted on a 1in² pad of 2 oz copper.


b) 125°C/W when mounted on a minimum pad.

3.7

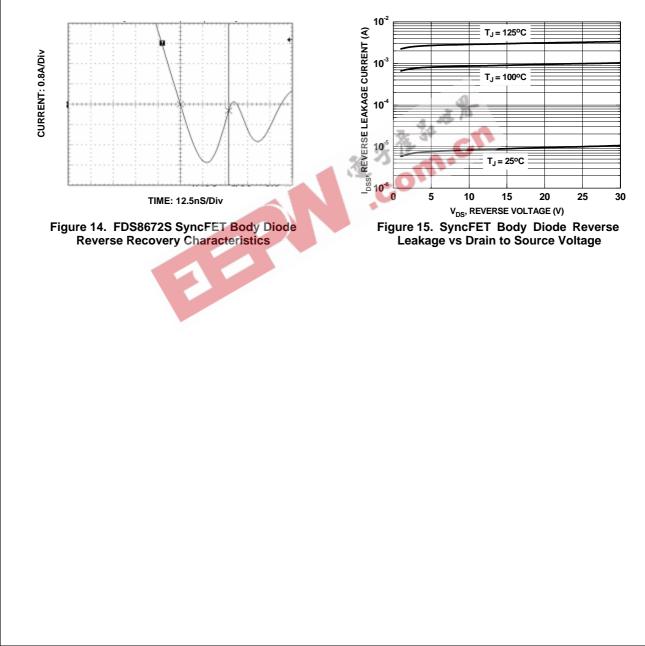

©2007 Fairchild Semiconductor Corporation FDS8672S Rev.D2

nC


©2007 Fairchild Semiconductor Corporation FDS8672S Rev.D2

www.fairchildsemi.com

FDS8672S N-Channel PowerTrench[®] SyncFET[™]


www.fairchildsemi.com

Typical Characteristics T_J = 25°C unless otherwise noted SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverse recovery characteristic of the FDS8672S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] * FRFET® Global Power ResourceSM Green FPS™ Green FPS[™] e-Series[™] GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM[™] **OPTOLOGIC[®] OPTOPLANAR[®]**

FPSTM

PDP-SPM™ Power220[®] Power247® **POWEREDGE[®]** Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET**® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

EGENERAL The Power Franchise[®] pranchise TinyBoost[™] TinyBuck[™] TinyLogic[®] TINYOPTO[™] TinyPOwer[™] TinyPWM[™] TinyPWM[™] TinyWire[™] µSerDes[™] UHC[®] Ultra FRFET[™]

UniFET™

VCX™

SyncFET™

* EZSWITCH[™] and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.