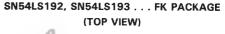
SN54192, SN54193, SN54LS192, SN54LS193, SN74192, SN74193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR) SDLS074 – DECMEBER 1972 – REVISED MARCH 1988

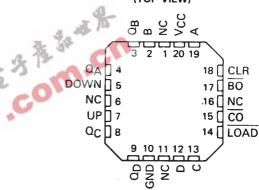
Cascading Circuitry Provided Internally

- Synchronous Operation
- Individual Preset to Each Flip-Flop
- Fully Independent Clear Input

TYPES	TYPICAL MAXIMUM	TYPICAL
	COUNT FREQUENCY	POWER DISSIPATION
ʻ192,ʻ193	32 MHz	325 mW
'LS192,'LS193	32 MHz	95 mW

SN54192, SN54193, SN54LS192, SN54LS193 . . . J OR W PACKAGE SN74192, SN74193 . . . N PACKAGE SN74LS192, SN74LS193 . . . D OR N PACKAGE (TOP VIEW)


ВС	1	U_{16}	Dvcc
QBC	2	15	
QAC	3	14	
DOMN	4	13	BO
UP	5	12	
Ωc[6	11	LOAD
ΩD[7	10]c
GND	8	9	DD


description

These monolithic circuits are synchronous reversible (up/down) counters having a complexity of 55 equivalent gates. The '192 and 'LS192 circuits are BCD counters and the '193 and 'LS193 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (rippleclock) counters.

The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature

NC - No internal connection

allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers, etc., required for long words.

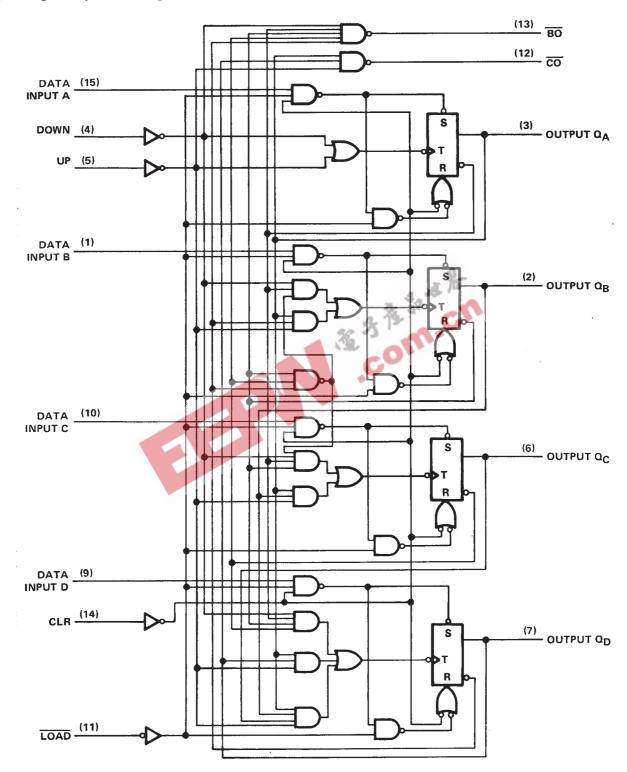
These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-up input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54'	SN54LS'	SN74'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	V
Operating free-air temperature range	- 55	to 125	0	to 70	°C
Storage temperature range	- 65	to 150	- 65	to 150	°C

NOTE 1: Voltage values are with respect to network ground terminal.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

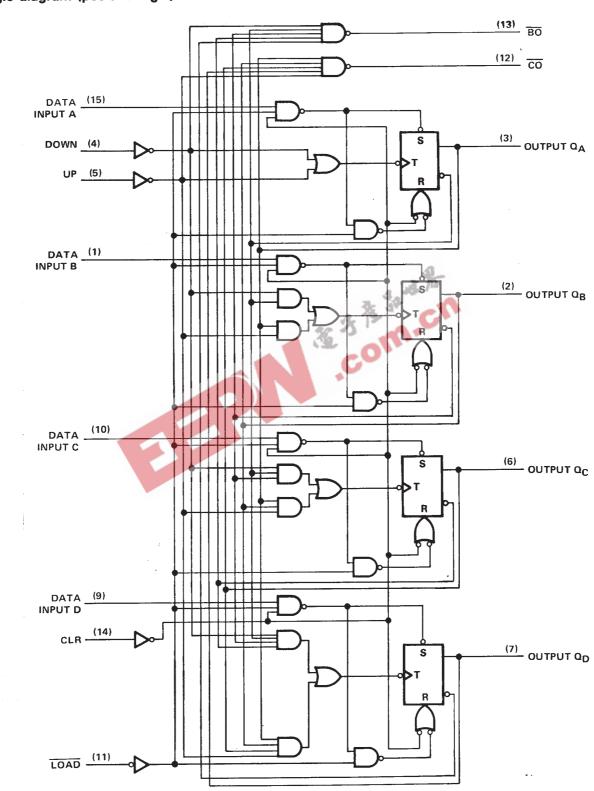

Copyright © 1988, Texas Instruments Incorporated

1

SN54192, SN54LS192, SN74192, SN74LS192 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

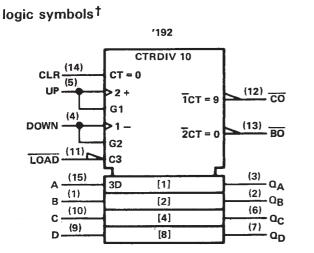
logic diagram (positive logic)

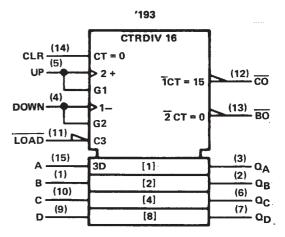


Pin numbers shown are for D, J, N, and W packages.

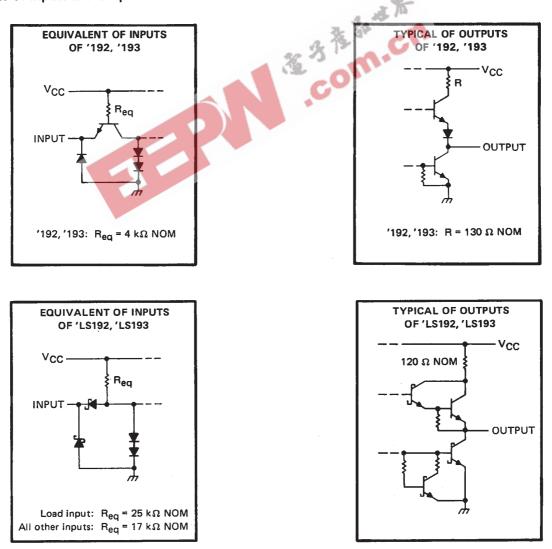
SN54193, SN54LS193, SN74193, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988




logic diagram (positive logic)

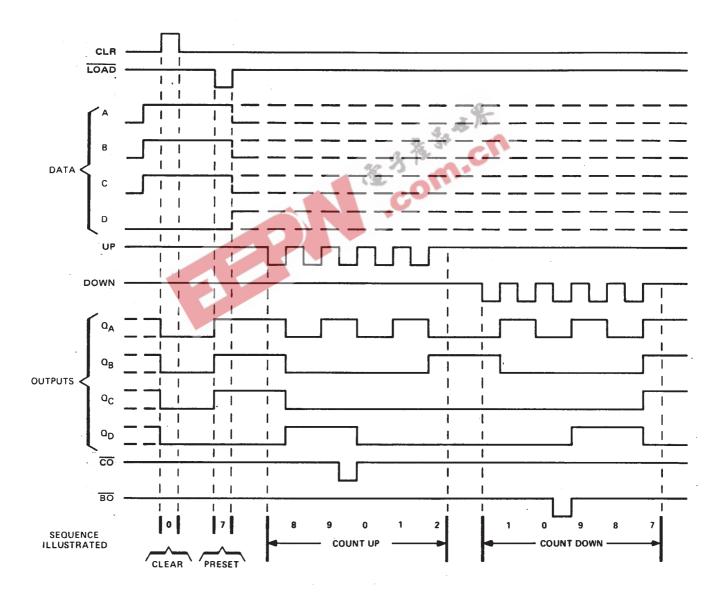
Pin numbers shown are for D, J, N, and W packages.



SN54192, SN54193, SN54LS192, SN54LS193, SN74192, SN74193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR) SDLS074 – DECMEBER 1972 – REVISED MARCH 1988

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages. schematics of inputs and outputs

SN54192, SN54LS192, SN74192, SN74LS192 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)


SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

'192, 'LS192 DECADE COUNTERS

typical clear, load, and count sequences

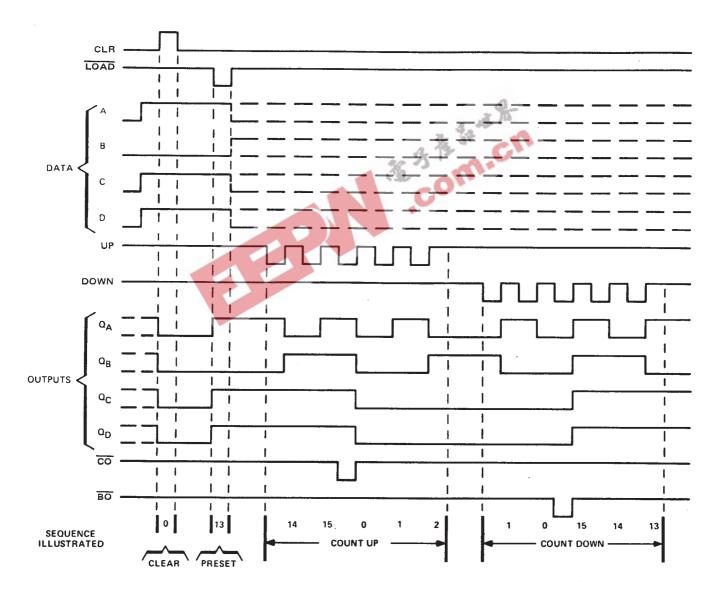
Illustrated below is the following sequence:

- 1. Clear outputs to zero.
- 2. Load (preset) to BCD seven.
- 3. Count up to eight, nine, carry, zero, one, and two.
- 4. Count down to one, zero, borrow, nine, eight, and seven.

NOTES: A. Clear overrides load, data, and count inputs.

B. When counting up, count-down input must be high; when counting down, count-up input must be high.

SN54193, SN54LS193, SN74193, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)


SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

'193, 'LS193 BINARY COUNTERS

typical clear, load, and count sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero.
- 2. Load (preset) to binary thirteen.
- 3. Count up to fourteen, fifteen, carry, zero, one, and two.
- 4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

NOTES: A. Clear overrides load, data, and count inputs.

B. When counting up, count-down input must be high; when counting down, count-up input must be high.

SN54192, SN54193, SN74192, SN74193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

recommended operating conditions

			SN54192 SN54193		SN74192 SN74193						
			MIN	NOM	MAX	MIN	NOM	MAX			
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V			
юн	High-level output current			-0.4			-0.4	mA			
IOL .	Low-level output current			16			16	mA			
fclock	Clock frequency		0		25	0		25	MHz		
tw	Width of any input pulse		20			20			ns		
t _{su}	Data setup time, (see Figure 1)		20			20			ns		
		Data, high or low	0	-		0					
th	Hold time	LOAD	3			3			ns		
ТА	Operating free-air temperature		-55		125	0		70	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN5419	2		SN7419	2	
	PARAMETER	TEST CONDITIONS [†]	SN5419		SN7419	3	UNIT	
			MIN TYP	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage	. 4,	2		2	•		V
VIL	Low-level input voltage			0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ = -12 mA		-1.5			-1.5	V
v _{он}	High-level output voltage	$V_{CC} = MIN$, $V_{IH} = 2V$, $V_{IL} = 0.8V$, $I_{OH} = -0.4 \text{ mA}$	2.4 3.4		2.4	3.4		v
VOL	Low-level output voltage	$V_{CC} = MIN, V_{IH} = 2 V$ $V_{IL} = 0.8 V, I_{OL} = 16 mA$	0.2	0.4		0.2	0.4	v
٦ ₁	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V		1			1	mA
¹ ІН	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V		40			40	μA
liL.	Low-level input current	V _{CC} = MAX, V ₁ = 0.4 V		-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	20	-65	-18		-65	mA
Icc	Supply current	V _{CC} = MAX, See Note 2	65	89		65	102	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

 $\S{\rm Not}$ more than one output should be shorted at a time.

NOTE 2: I_{CC} is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5 V.

switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER¶	FROM INPUT	TO OUTPUT	TEST CONDITIONS	MIN	түр	MAX	UNIT
f _{max}		_		25	32		MHz
^t PLH	UP	co	7		17	26	ns
^t PHL	UP	CO			16	24	
tPLH	DOWNI	BO	C _L = 15 pF,		16	24	
^t PHL	DOWN	во	$R_{L} = 400 \Omega,$		16	24	ns
^t PLH	UP OR DOWN	Q	See Figures 1 and 2		25	38	
tPHL		ŭ			31 47		ns
tPLH	1010	0			27	40	
tPHL	LOAD	Q			29	40	ns
tPHL	CLR	Q	7		22	35	ns

¶f_{max} ≡ maximum clock frequency

 $t_{PLH} \equiv propagation delay time, low-to-high-level output$

 $t_{PHL} \equiv$ propagation delay time, high-to-low-level output

SN54LS192, SN54LS193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

recommended operating conditions

			SN54LS192 SN54LS193		SN74LS192 SN74LS193			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	. 5	5.5	4.75	5	5.25	V
юн	High-level output current			-400			-400	μA
IOL .	Low-level output current			4			8	mA
fclock	Clock frequency	0		25	0		25	MHz
tw	Width of any input pulse	20			20			ns
	Clear inactive-state setup time	15			15			ns
t _{su}	Load inactive-state setup time	15			15			ns
	Data setup time (see Figure 1)	20			20			ns
t _h	Data hold time	5			5			ns
TA	Operating free-air temperature range	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER TEST CONDITIONS [†]		T		54LS1 54LS1	100		N74LS1 N74LS1		UNIT	
			•.		MIN	TYP [‡]	MAX	MIN	түр‡	MAX	
VIH	High-level input voltage			n?	2	C		2			V
VIL	Low-level input voltage			36. 3			0.7			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I =18 mA	C.L.			-1.5			-1.5	v
Vон	High-level output voltage		V _{IH} = 2 V, 1 _{OH} = -400 μA	.0	2.5	3.4		2.7	3.4		v
VOL	Low-level output voltage	$V_{CC} = MIN,$ $V_{1L} = V_{1L} max$		IOL = 4 mA IOL = 8 mA		0.25	0.4		0.15 0.35	0.4 0.5	v
łı	Input current at maximum input voltage	V _{CC} = MAX,	Vi = 7 V				0.1		0.55	0.0	(mA
Чн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μA
1 _L	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX			20		-100	-20		-100	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2			19	34		19	-34	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. [‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}$ C.

[§]Not more than one output should be shorted at a time , and duration of the short-circuit should not exceed one second.

NOTE 2: I_{CC} is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5 V.

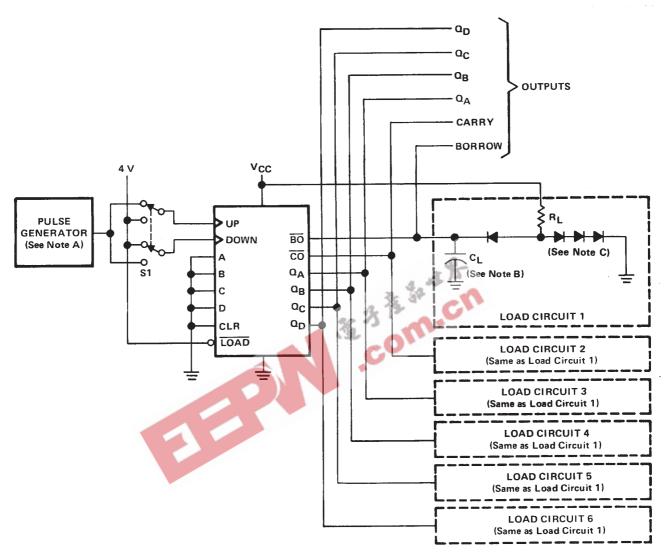
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM INPUT	ΤΟ Ουτρυτ	TEST CONDITIONS	MIN	түр	MAX	UNIT
f _{max}				25	32		MHz
^t PLH	UP	co			17	26	ns
tPHL		0			18	24	115
^t PLH	DOWN		CL = 15 pF,		16	24	ns
tPHL_	DOWN	BO	$-R_{L} = 2 k\Omega,$		15	24	24
tPLH		Q	See Figures 1 and 2		27	38	
^t PHL	UP OR DOWN			30	47	ns	
tPLH	1.000	0	7		24	40	
tPHL	LOAD	۵			25	40	40 ns
tPHL	CLR	Q			23	35	ns

11 The pulse generators have the following characteristics: $Z_{out} \approx 50 \,\Omega$ and for the data pulse generator PRR $\leq 500 \,\text{kHz}$, duty (See Note C) Same as Load Circuit 1) (Same as Load Circuit 1) Same as Load Circuit 1] I LOAD CIRCUIT 4 LOAD CIRCUIT 1 LOAD CIRCUIT 2 LOAD CIRCUIT 2 1 Ч OUTPUTS CL (See Note B) cycle = 50%; for the load pulse generator PRR is two times data PRR, duty cycle = 50%-{II I ð ď ဗ 80 l 1 1 t_r and $t_f \leq 7$ ns. V_{ref} is 1.5 V for '192 and '193, 1.3 V for 'LS192 and 'LS193. **TEST CIRCUIT** OPEN OPEN 100 **O** 00 a **B** 80 20 20 -||-DOWN LOAD CLR Ъ υ ۵ ٩ ά CL includes probe and jig capacitance. Diodes are 1N3064 or equivalent. łŀ GENERATOR GENERATOR (See Note A) (See Note A) PULSE LOAD DATA PULSE GENERATOR (See Note A) CLEAR PULSE Ŕ ப்ப்ய ю. NOTES:

PARAMETER MEASUREMENT INFORMATION

FIGURE 1A – CLEAR, SETUP AND LOAD TIMES

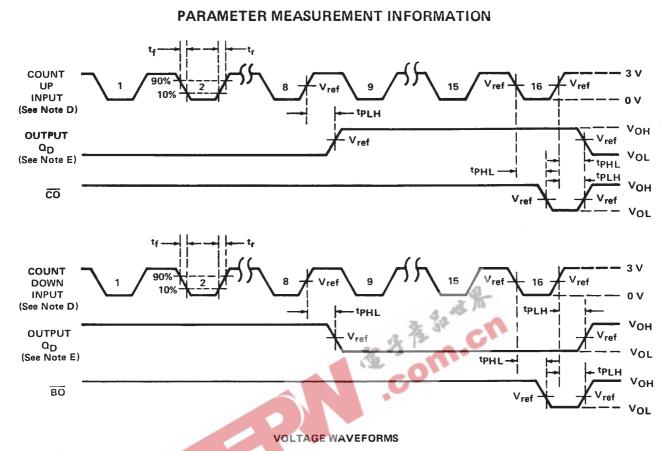

SN54192, SN54193, SN54LS192, SN54LS193, SN74192, SN74193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR) SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

SN54192, SN54193, SN54LS192, SN54LS193, SN74192, SN74193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR) SDLS074 - DECMEBER 1972 - REVISED MARCH 198

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT


NOTES: A. The pulse generators have the following characteristics: PRR \approx 1 MHz, Z_{out} \approx 50 Ω , duty cycle = 50%.

- B. CL includes probe and jig capacitance.
- C. Diodes are 1N3064 or equivalent.
- D. Cout-up and dount-down pulse shown are for the '193 and 'LS193 binary counters. Count cycle for '192 and 'LS192 decade counters is 1 through 10.
- E. Waveforms for outputs $\ensuremath{\mathbb{Q}}_A,\,\ensuremath{\mathbb{Q}}_B,\,\ensuremath{\text{and}}\,\,\ensuremath{\mathbb{Q}}_C$ are omitted to simplify the drawing.
- F. t_r and $t_f \leq 7$ ns.
- G. \dot{V}_{ref} is 1.5 V for '192 and '193, 1.3 V for 'LS192 and 'LS193.

FIGURE 2A - PROPAGATION DELAY TIMES

SN54192, SN54193, SN54LS192, SN54LS193, SN74192, SN74193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR) SDLS074 – DECMEBER 1972 – REVISED MARCH 1988

- NOTES: A. The pulse generators have the following characteristics: PRR \approx 1 MHz, Z_{out} \approx 50 Ω , duty cycle = 50%.
 - B. CL includes probe and jig capacitance.
 - C. Diodes are 1N3064 or equivalent.
 - D. Cout-up and dount-down pulse shown are for the '193 and 'LS193 binary counters. Count cycle for '192 and 'LS192 decade counters is 1 through 10.
 - E. Waveforms for outputs ${\tt Q}_{A},\,{\tt Q}_{B},\,{\tt and}\,\,{\tt Q}_{C}$ are omitted to simplify the drawing.
 - F. t_r and $t_f \leq 7$ ns.
 - G. V_{ref} is 1.5 V for '192 and '193, 1.3 V for 'LS192 and 'LS193.

FIGURE 28 - PROPAGATION DELAY TIMES

PACKAGE OPTION ADDENDUM

17-Oct-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9558401QEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
5962-9558401QFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
5962-9558401QFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
76006012A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
76006012A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
7600601EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
7600601EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
7600601FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
7600601FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/01309BEA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
JM38510/01309BEA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
JM38510/31508B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31508B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31508BEA	ACTIVE	CDIP	J	16	13.	🚺 TBD 🌏	Call TI	Level-NC-NC-NC
JM38510/31508BEA	ACTIVE	CDIP	J	16	A 12	TBD	Call TI	Level-NC-NC-NC
JM38510/31508BFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31508BFA	ACTIVE	CFP	W	16	-10	TBD	Call TI	Level-NC-NC-NC
JM38510/31508SEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31508SEA	ACTIVE	CDIP	L	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31508SFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/31508SFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SN54192J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN54192J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN54193J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN54193J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN54LS193J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN54LS193J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN74192N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74192N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74193N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74193N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74193N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74193N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS192D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI
SN74LS192D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI
SN74LS192N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS192N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS193D	ACTIVE	SOIC	D	16	40 (Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
SN74LS193D	ACTIVE	SOIC	D	16	40 (Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
SN74LS193DE4	ACTIVE	SOIC	D	16	40 (Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR

PACKAGE OPTION ADDENDUM

17-Oct-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ^{(;}
SN74LS193DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAF
SN74LS193DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAF
SN74LS193DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAF
SN74LS193DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAF
SN74LS193DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAF
SN74LS193J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74LS193J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74LS193N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS193N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS193N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS193N3	OBSOLETE	PDIP	Ν	16	3:	TBD	Call TI	Call TI
SN74LS193NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS193NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS193NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS193NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS193NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS193NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SNJ54192J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54192J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54192W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54192W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54193J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SNJ54193J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SNJ54193W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI
SNJ54193W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI
SNJ54LS193FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS193FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS193J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS193J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS193W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS193W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in

17-Oct-2005

a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD**: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

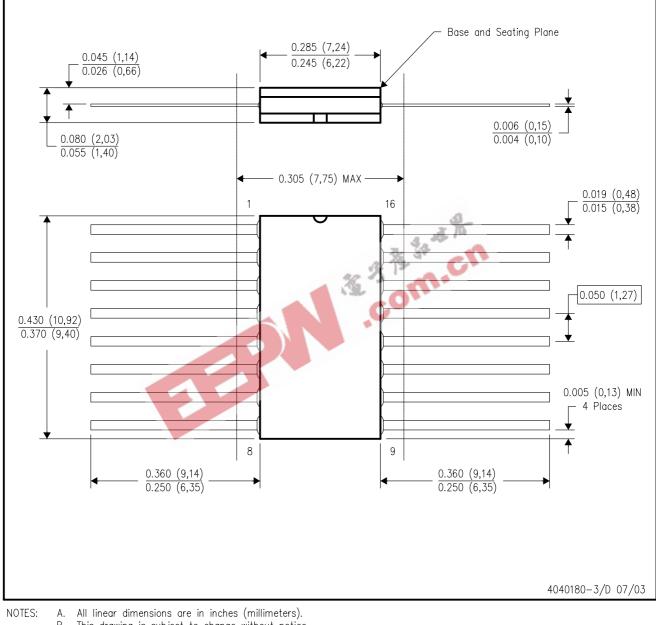
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE


PINS ** 14 16 18 20 DIM 0.300 0.300 0.300 0.300 В А (7,62) (7,62) (7,62) (7,62) BSC BSC BSC BSC 8 14 0.785 1.060 .840 0.960 B MAX (19,94)(21, 34)(24, 38)(26, 92)B MIN С 0.300 0.300 0.310 0.300 C MAX (7, 62)(7,62) (7, 62)(7, 87)C MIN 7 0.245 0.245 0.220 0.245 0.065 (1,65) 0.045 (1,14) (6, 22)(6, 22)(5, 59)(6, 22)0.060 (1,52) - 0.005 (0,13) MIN Α -0.015 (0,38) 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.026 (0,66) 0.014 (0,36) 0°-15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040083/F 03/03

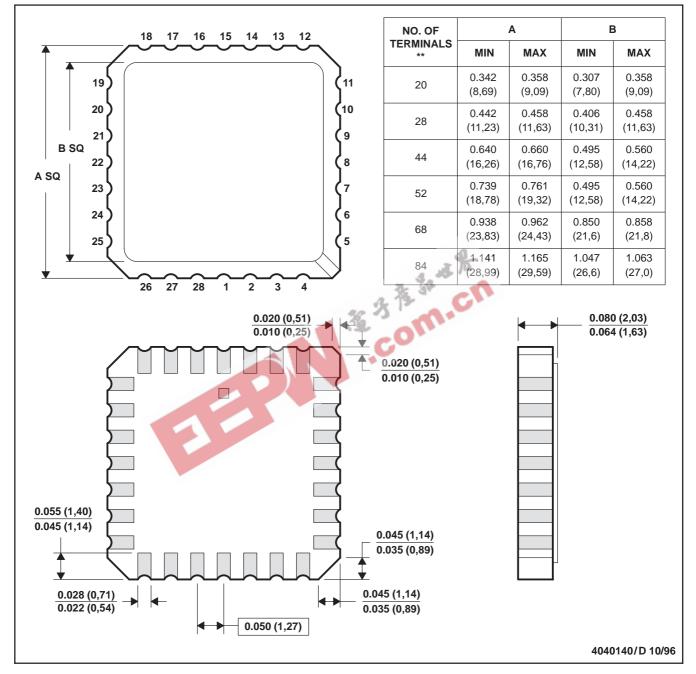
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

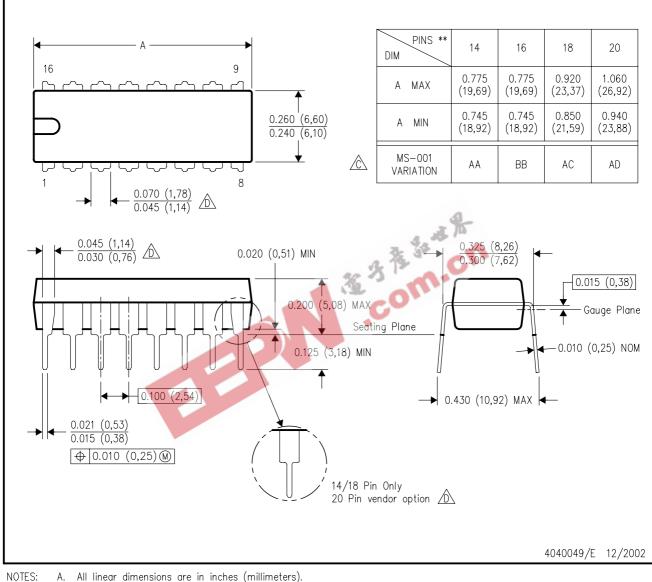


MECHANICAL DATA

MLCC006B - OCTOBER 1996

LEADLESS CERAMIC CHIP CARRIER

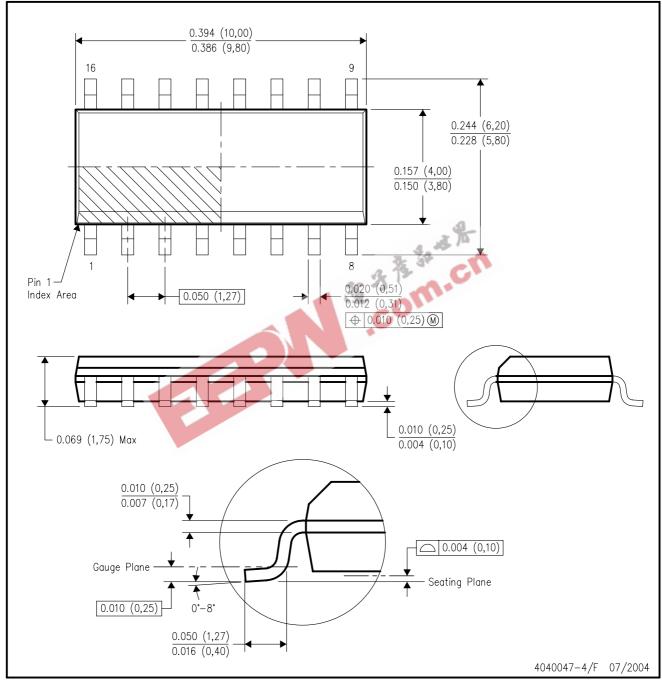
FK (S-CQCC-N**) 28 TERMINAL SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

PLASTIC DUAL-IN-LINE PACKAGE

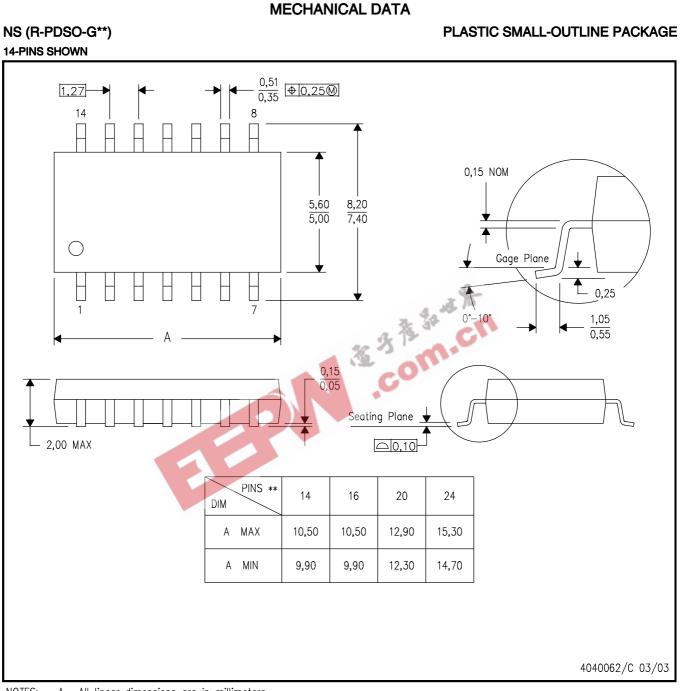
16 PINS SHOWN


A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.

- \triangle Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AC.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an untair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated