

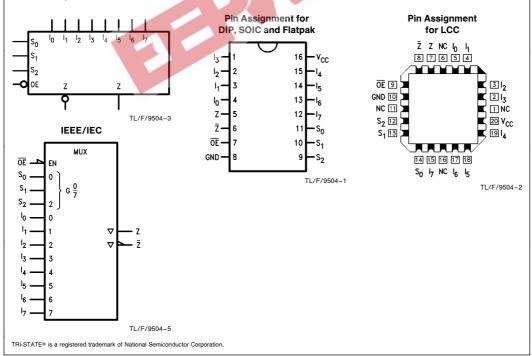
54F/74F251A 8-Input Multiplexer with TRI-STATE® Outputs

General Description

The 'F251A is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Features

- Multifunctional capability
- On-chip select logic decoding
- Inverting and non-inverting TRI-STATE outputs


Commercial	Military	Package Number	Package Description		
74F251APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line		
	54F251ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line		
74F251ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC		
74F251ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ		
	54F251AFM (Note 2)	W16A	16-Lead Cerpack		
	54F251ALL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

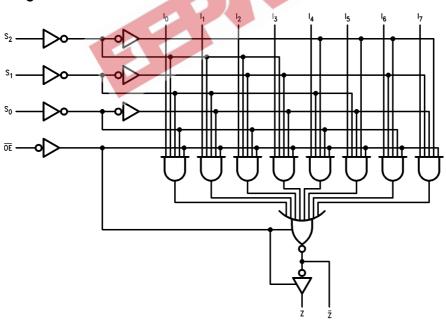
Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
S ₀ -S ₂	Select Inputs	1.0/1.0	20 μA/ – 0.6 mA		
ŌĒ	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/ - 0.6 mA		
I ₀ -I ₇	Multiplexer Inputs	1.0/1.0	20 μA/ - 0.6 mA		
Z	TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)		
Z	Complementary TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)		

Functional Description

This device is a logical implementation of a single-pole, 8position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both assertion and negation outputs are provided. The Output Enable input (OE) is active LOW. When it is activated, the logic function provided at the output is:

$$Z = \overline{OE} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_6 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_7 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2)$$


When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

Truth Table

	Inp	Outputs			
ŌĒ	S ₂	S ₁	S ₀	Z	Z
Н	Х	Χ	Χ	Z	Z
L	L	L	L	Īο	I ₀
L	L	L	Н	Ī ₁	11
L	L	Н	L	Ī ₂	l ₂
L	L	Н	Н	Ī ₃	l ₃
L	Н	L	L.o	\bar{I}_4	I_4
L	Н	L	H.	Ī ₅	l ₅
L	Н	Н 🊜	10F /**	Ī ₆	l ₆
L	Н	20日 万	₽ Н _,	\bar{l}_7	l ₇

- H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Immaterial
 Z = High Impedance

Logic Diagram

TI /F/9504-4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$

V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V

Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

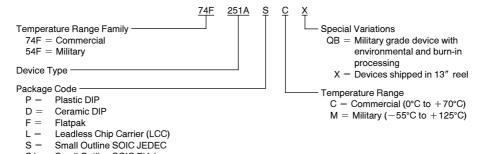
Recommended Operating Conditions

Free Air Ambient Temperature

Military −55°C to +125°C Commercial 0°C to +70°C

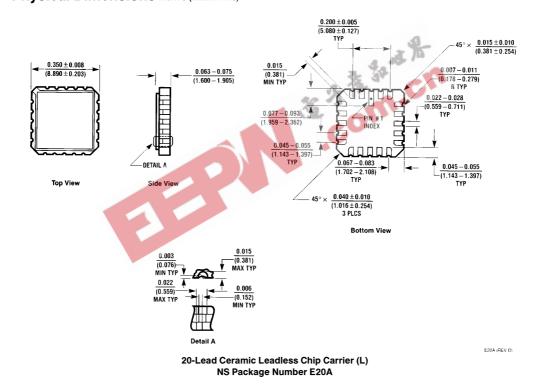
Supply Voltage

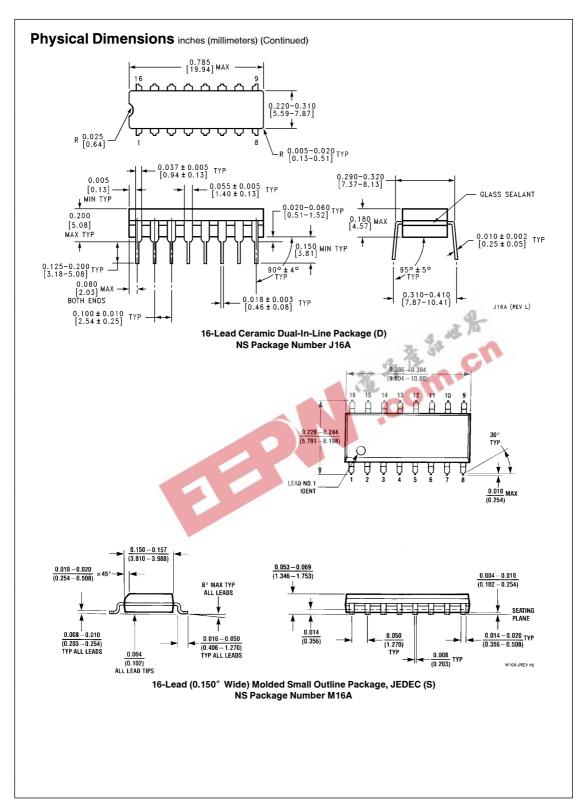
Military +4.5V to +5.5V Commercial +4.5V to +5.5V

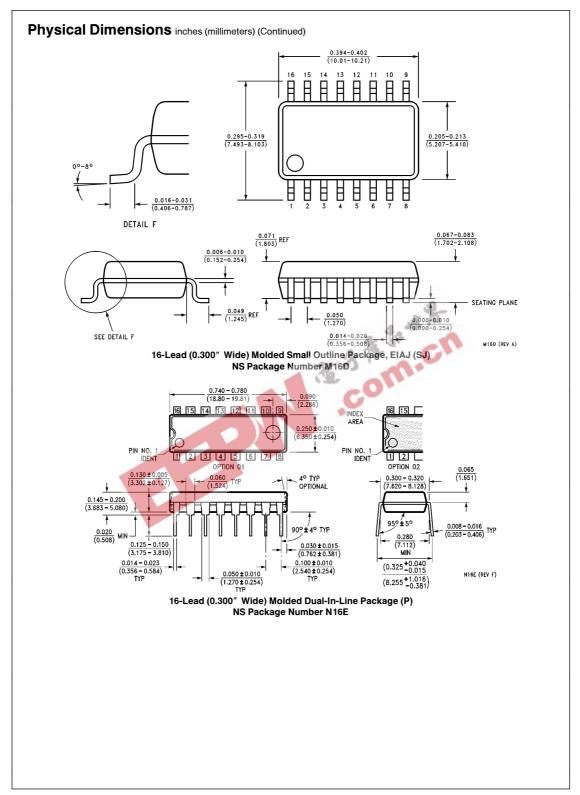

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	v _{cc}	Conditions		
Syllibol	1 drameter		Min	Тур	Max	Units	VCC	Conditions		
V _{IH}	Input HIGH Voltage	2.0			٧		Recognized as a HIGH Signal			
V_{IL}	Input LOW Voltage				0.8	V	a.	Recognized as a LOW Signal		
V _{CD}	Input Clamp Diode Volta	age			-1.2	- V	Min	l _{IN} = −18 mA		
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7	1	36.5	V	Min	$\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$		
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}	2		0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$		
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V		
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V		
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$		
V_{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded		
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded		
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$		
l _{OZH}	Output Leakage Current	t			50	μΑ	Max	V _{OUT} = 2.7V		
l _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V		
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V		
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V		
I _{CCL}	Power Supply Current			15	22	mA	Max	V _O = LOW		
I _{CCZ}	Power Supply Current			16	24	mA	Max	V _O = HIGH Z		

Symbol		$74F \\ T_A = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_L = 50 pF$			5-	4F	74	4F	
	Parameter				T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max]
t _{PLH} t _{PHL}	Propagation Delay S_n to \overline{Z}	3.5 3.2	6.0 5.0	9.0 7.5	3.5 3.2	11.5 8.0	3.5 3.2	9.5 7.5	ns
t _{PLH} t _{PHL}	Propagation Delay S _n to Z	4.5 4.0	7.5 6.0	10.5 8.5	3.5 3.0	14.0 10.5	4.5 4.0	12.5 9.0	ns
t _{PLH} t _{PHL}	Propagation Delay I_n to \overline{Z}	3.0 1.5	5.0 2.5	6.5 4.0	2.5 1.5	8.0 6.0	3.0 1.5	7.0 5.0	ns
t _{PLH} t _{PHL}	Propagation Delay	3.5 3.5	5.0 5.5	7.0 7.0	2.5 3.5	9.0 9.0	2.5 3.5	8.0 7.5	ns
t _{PZH}	Output Enable Time OE to Z	2.5 2.5	4.3 4.3	6.0 6.0	2.0 2.5	7.0 7.5	2.5 2.5	7.0 6.5	
t _{PHZ}	Output Disable Time OE to Z	2.5 1.5	4.0 3.0	5.5 4.5	2.5 1.5	6.0 5.0	2.5 1.5	6.0 4.5	– ns
t _{PZH}	Output Enable Time OE to Z	3.5 3.5	5.0 5.5	7.0 7.5	3.0 3.5	8.5 9.0	3.0 3.5	7.5 8.0	
t _{PHZ}	Output Disable Time OE to Z	2.0 1.5	3.8 3.0	5.5 4.5	2.0 1.5	5.5 5.5	2.0 1.5	5 .5 4.5	ns
		3				,co	Mr.		


Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:



Physical Dimensions inches (millimeters)

 $SJ = \;\; Small \; Outline \; SOIC \; EIAJ$

Physical Dimensions inches (millimeters) (Continued) $\frac{0.050-0.080}{(1.270-2.032)}$ 0.371 - 0.390(9.423 - 9.906) $\frac{0.050\pm0.005}{(1.270\pm0.127)} \text{ TYP}$ 0.007 - 0.0180.004 - 0.006 $\frac{0.000}{(0.102-0.152)}$ TYP (0.178 – 0.457) TYP ← 0.000 MIN TYP 0.250 - 0.370 (6.350 - 9.398)0.300 0.245 - 0.275(7.620) MAX GLASS (6.223 - 6.985)٧ 0.008 - 0.012 $\overline{(0.203 - 0.305)}$ DETAIL A $\frac{0.250 - 0.370}{(6.350 - 9.398)}$ PIN NO. 1 DETAIL A IDENT TYP W16AYBEV H) 16-Lead Ceramic Flatpak (F) NS Package Number W16A $\frac{0.026-0.040}{(0.660-1.016)} \text{ TYP}$ EFRA

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240

National Semiconducto GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruc Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1

National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-999 Fax: (3) 558-998