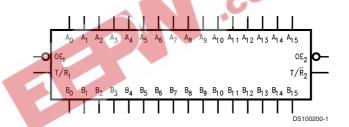


54ABT16245

16-Bit Transceiver with TRI-STATE® Outputs

General Description

The 'ABT16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B ports by placing them in a high impedance state.

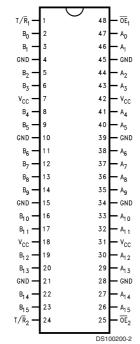

- Separate control logic for each byte
- 16-bit version of the 'ABT245
- A and B output sink capability of 48 mA, source capability of 24 mA
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9317501

Features

■ Bidirectional non-inverting buffers

		4
Military	Package	Package Description
wiiitary	Number	Fackage Description
54ABT16245W-QML	WA48A	48-Lead Cerpack

Logic Symbol


Pin Description

Pin Names	Description				
ŌĒn	Output Enable Input (Active Low)				
T/R _n	Transmit/Receive Input				
A ₀ -A ₁₅	Side A Inputs/Outputs				
B ₀ -B ₁₅	Side B Inputs/Outputs				

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Connection Diagram

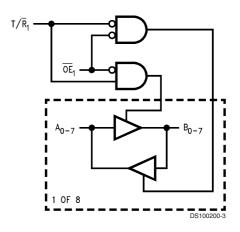
Pin Assignment for Cerpack

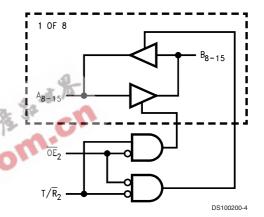
Functional Description

The 'ABT16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Inputs		Outputs
\overline{OE}_1 T/\overline{R}_1		
L	L	Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇
L	Н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇
Н	Χ	HIGH-Z State on A ₀ -A ₇ , B ₀ -B ₇

Inputs		Outputs
\overline{OE}_2	T/R ₂	
L	L	Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅
L	Н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅
Н	Χ	HIGH-Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅


H = High Voltage Level


L = Low Voltage Level

X = Immaterial

Z = High Impedance

Logic Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature -65°C to +150°C

Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias

Ceramic -55°C to +175°C

 V_{CC} Pin Potential to

 $\begin{array}{ll} \mbox{Ground Pin} & -0.5 \mbox{V to } +7.0 \mbox{V} \\ \mbox{Input Voltage (Note 2)} & -0.5 \mbox{V to } +7.0 \mbox{V} \\ \end{array}$

Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-off State -0.5V to 5.5V in the HIGH State -0.5V to V_{CC}

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) DC Latchup Source Current -500 mA Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature

Military -55° C to $+125^{\circ}$ C

Supply Voltage

 $\begin{array}{lll} \mbox{Military} & +4.5\mbox{V to } +5.5\mbox{V} \\ \mbox{Minimum Input Edge Rate} & (\Delta\mbox{V}/\Delta\mbox{t}) \\ \mbox{Data Input} & 50 \mbox{ mV/ns} \\ \mbox{Enable Input} & 20 \mbox{ mV/ns} \\ \end{array}$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

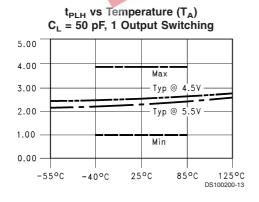
Symbol	Parar	neter	ABT16245		Units	V _{cc}	Conditions	
			Min	Тур	Max	.al		The second second
V _{IH}	Input HIGH Voltage		2.0			V	10	Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V	-	Recognized LOW Signal
V _{CD}	Input Clamp Diode Vol	tage			-1.2	٧	Min	$I_{IN} = -18 \text{ mA } (\overline{OE}_n, T/\overline{R}_n)$
V _{OH}	Output HIGH Voltage	54ABT	2.5		1	V	Min	$I_{OH} = -3 \text{ mA } (A_n, B_n)$
		54ABT	2.0	1		V	Min	$I_{OH} = -24 \text{ mA } (A_n, B_n)$
V _{OL}	Output LOW Voltage	54ABT	11		0.55	٧	Min	$I_{OL} = 48 \text{ mA } (A_n, B_n)$
I _{IH}	Input HIGH Current		Z	Ι.	5	μΑ	Max	$V_{IN} = 2.7V (\overline{OE}_n, T/\overline{R}_n) (Note 3)$
					5			$V_{IN} = V_{CC} (\overline{OE}_n, T/\overline{R}_n)$
I _{BVI}	Input HIGH Current				7	μA	Max	$V_{IN} = 7.0V (\overline{OE}_n, T/\overline{R}_n)$
	Breakdown Test							
I _{BVIT}	Input HIGH Current				100	μΑ	Max	$V_{IN} = 5.5V (A_n, B_n)$
	Breakdown Test (I/O)							
I _{IL}	Input LOW Current				-5	μΑ	Max	$V_{IN} = 0.5V (\overline{OE}_n, T/\overline{R}_n) (Note 3)$
					-5			$V_{IN} = 0.0V (\overline{OE}_n, T/\overline{R}_n)$
V _{ID}	Input Leakage Test		4.75			V	0.0	$I_{ID} = 1.9 \mu A (\overline{OE}_n, T/\overline{R}_n)$
								All Other Pins Grounded
I _{IH} + I	Output Leakage Current				50	μΑ	0 –	$V_{OUT} = 2.7V (A_n, B_n); \overline{OE} = 2.0V$
OZH							5.5V	
I _{IL} + I	Output Leakage Currer	nt			-50	μA	0 –	$V_{OUT} = 0.5V (A_n, B_n); \overline{OE} = 2.0V$
OZL	Output Chart Circuit Co	Irront	-100		-275	m A	5.5V Max	V 0.0V (A B.)
los	Output Short-Circuit Coutput High Leakage (-100		50	mA 	Max	$V_{OUT} = 0.0V (A_n, B_n)$
I _{CEX}		Jurrent			100	μΑ		$V_{OUT} = V_{CC} (A_n, B_n)$
l _{ZZ}	Bus Drainage Test				100	μΑ	0.0	$V_{OUT} = 5.50V (A_n, B_n);$ All Others GND
1	Power Supply Current				100	μA	Max	All Outputs HIGH
I _{CCH}	Power Supply Current				60	mA	Max	All Outputs LOW
I _{CCL}	Power Supply Current				100	μΑ	Max	$\overline{OE}_n = V_{CC}$, $T/\overline{R}_n = GND$ or V_{CC}
I _{ccz}	Power Supply Current				100	μΑ	IVIAX	
1	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		All others at V _{CC} or GND $V_{I} = V_{CC} - 2.1V$
I _{CCT}	Additional ICC/Inhat	Outputs TRI-STATE			2.5	mA	Max	\overline{OE}_n , T/\overline{R}_n $V_1 = V_{CC} - 2.1V$
		Outputs TRI-STATE			50	μΑ	IVIAA	Data Input $V_1 = V_{CC} - 2.1V$
		Calpute THEOTATE			50	μΛ		All others at V_{CC} or GND
								1 - m canolo de 4 CC of GIAD

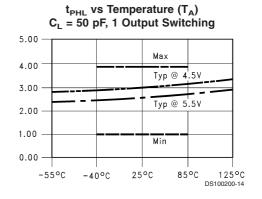
3

DC Electrical Characteristics (Continued)

Symbol		Parameter	A	ABT16245		ABT16245		V _{cc}	Conditions
			Min	Тур Мах					
I _{CCD}	Dynamic I _{CC}	No Load			mA/	Max	Outputs Open		
				0.1	MHz		$\overline{OE}_n = GND, T/\overline{R}_n = GND \text{ or } V_{CC}$		
							One Bit Toggling, 50% Duty Cycle		

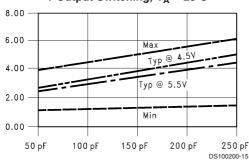
Note 3: Guaranteed, but not tested.

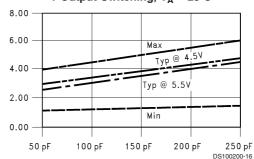

AC Electrical Characteristics


Symbol	Parameter	54/	ABT	Units	Fig.
		T,	A =		No.
		−55°C te	o +125°C		
		V _{CC} = 4	.5V-5.5V		
		C _L = 50 pF			
		Min	Max		
t _{PLH}	Propagation	0.5	4.5		
t _{PHL}	Delay Data	0.5	5.2	ns	Figure 5
	to Outputs		3_		
t _{PZH}	Output Enable	0.8	6.4	ns	Figure 4
t_{PZL}	Time	0.9	6.9		
t _{PHZ}	Output Disable	1.3	6.9	ns	Figure 4
t_{PLZ}	Time	1.0	6.9		

Capacitance

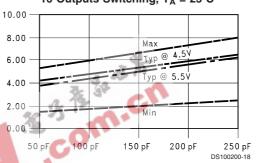
Symbol	Parameter	Тур	Units	Conditions, T _A = 25°C
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0.0V (\overline{OE}_n, T/\overline{R}_n)$
C _{I/O} (Note 4)	Output Capacitance	11	pF	$V_{CC} = 5.0V (A_n, B_n)$

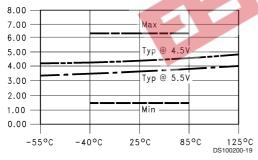

Note 4: C_{I/O} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

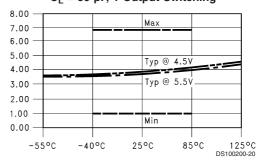


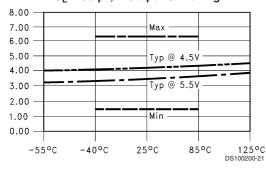
Capacitance (Continued)

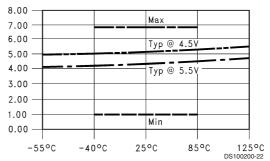

t_{PLH} vs Load Capacitance 1 Output Switching, T_A = 25°C


t_{PHL} vs Load Capacitance 1 Output Switching, T_A = 25°C

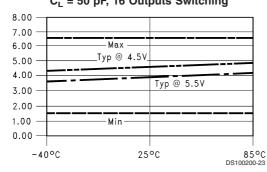

t_{PLH} vs Load Capacitance 16 Outputs Switching, T_A = 25°C

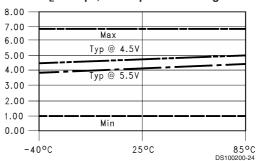

t_{PHL} vs Load Capacitance 16 Outputs Switching, T_A = 25°C


 t_{PZL} vs Temperature (T_A) $C_L = 50$ pF, 1 Output Switching

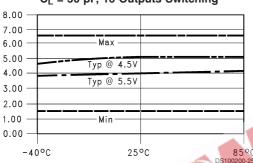

t_{PLZ} vs Temperature (T_A)
C_L = 50 pF, 1 Output Switching

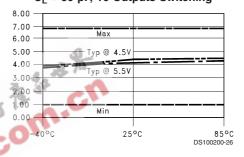
t_{PZH} vs Temperature (T_A) C_L = 50 pF, 1 Output Switching

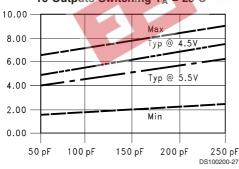

 t_{PHZ} vs Temperature (T_A) C_L = 50 pF, 1 Output Switching

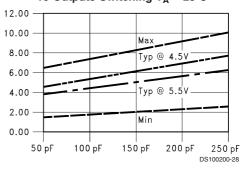

Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Table.

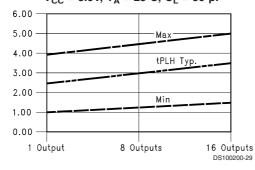
Capacitance (Continued)

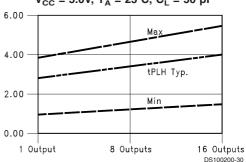

t_{PZH} vs Temperature (T_A) C₁ = 50 pF, 16 Outputs Switching


 t_{PHZ} vs Temperature (T_A) C_L = 50 pF, 16 Outputs Switching

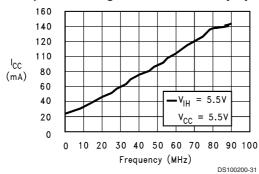

 t_{PZL} vs Temperature (T_A) C_L = 50 pF, 16 Outputs Switching


 t_{PLZ} vs Temperature (T_A) C_L = 50 pF, 16 Outputs Switching


t_{PZL} vs Load Capacitance 16 Outputs Switching T_A = 25°C

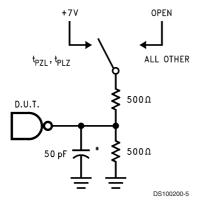

t_{PZH} vs Load Capacitance 16 Outputs Switching T_A = 25°C

 t_{PLH} vs Number Output Switching $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$, $C_L = 50$ pF


 t_{PHL} vs Number Output Switching $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$, $C_L = 50$ pF

Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Table.

Capacitance (Continued)


I_{CC} vs Frequency
Average, T_A = 25°C, V_{CC} = 5.5V
All Outputs Unloaded/Unterminated;
16 Outputs Switching In-Phase at 50% Duty Cycle

Dashed lines represent design characteristics; for specified guarantees, refer to AC Characteristics Table.

AC Loading

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

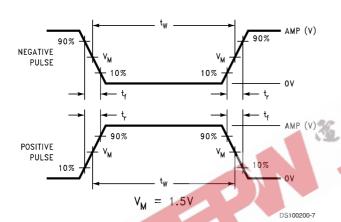


FIGURE 2. Input Pulse Requirements

Amplitude	Rep. Rate	t _w	t _r	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

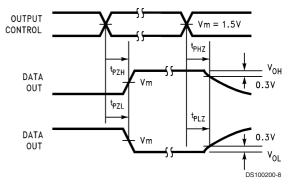


FIGURE 4. TRI-STATE Output HIGH and LOW Enable and Disable Times

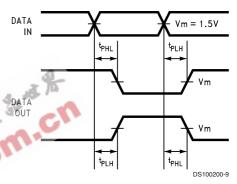
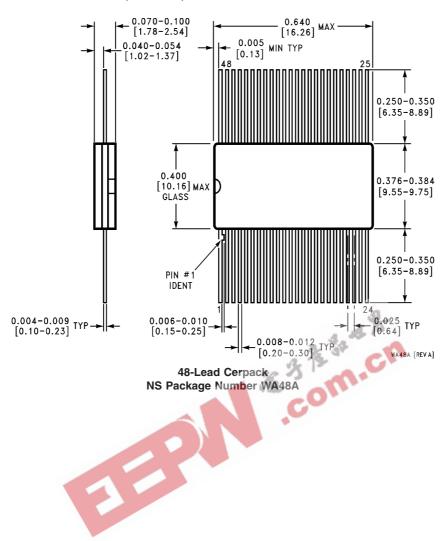



FIGURE 5. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560