

54ABT240

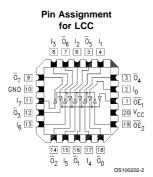
Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

The 'ABT240 is an inverting octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9318801


Features


■ Output sink capability of 48 mA, source capability of 24 mA

Ordering Code

Military	Package Number	Package Description			
54ABT240J-QML	J20A	20-Lead Ceramic Dual-In-Line			
54ABT240W-QML	W20A	20-Lead Cerpack			
54ABT240E-QML	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Connection Diagrams

Pin Names	Description				
\overline{OE}_1 , \overline{OE}_2	TRI-STATE Output				
	Enable Inputs				
$I_0 - I_7$	Inputs				
$\overline{O}_0 - \overline{O}_7$	Outputs				

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Truth Tables

Inputs		Outputs		
ŌE₁	I _n	(Pins 12, 14, 16, 18)		
L	L	Н		
L	Н	L		
Н	X	Z		

Inputs		Outputs		
ŌĒ₂	l _n	(Pins 3, 5, 7, 9)		
L	L	Н		
L	Н	L		
Н	X	Z		

- H = HIGH Voltage Level
- L = LOW Voltage Level
 X = Immaterial
 Z = High Impedance

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

Junction Temperature under Bias

Ceramic -55°C to +175°C

V_{CC} Pin Potential to

 Ground Pin
 -0.5V to +7.0V

 Input Voltage (Note 2)
 -0.5V to +7.0V

 Input Current (Note 2)
 -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-Off State $$-0.5{\rm V}$ to 5.5{\rm V}$ in the HIGH State <math display="inline">$-0.5{\rm V}$ to ${\rm V}_{\rm CC}$$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

DC Latchup Source Current (Across Comm Operating Range)

Over Voltage Latchup (I/O)

–150 mA 10V

Recommended Operating Conditions

Free Air Ambient Temperature

Military –55°C to +125°C

Supply Voltage

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

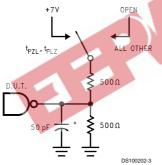
 $\textbf{Note 2:} \ \ \textbf{Either voltage limit or current limit is sufficient to protect inputs.}$

DC Electrical Characteristics

Symbol	Parar	neter	ABT240		Units	V _{CC}	Conditions		
			Min	Тур	Max	- 75	-		
V _{IH}	Input HIGH Voltage		2.0		N. C.	V	717	Recognized HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V	0.	Recognized LOW Signal	
V _{CD}	Input Clamp Diode Volta	ige	. 1		-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{OH} = -3 mA	
		54ABT	2.0			V	Min	I _{OH} = -24 mA	
V _{OL}	Output LOW Voltage	54ABT	\angle		0.55	V	Min	I _{OL} = 48 mA	
I _{IH}	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)	
			1		5			V _{IN} = V _{CC}	
I _{BVI}	Input HIGH Current Brea	akdown Test			7	μA	Max	V _{IN} = 7.0V	
I _{IL}	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)	
					-5			V _{IN} = 0.0V	
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA	
								All Other Pins Grounded	
I _{OZH}	Output Leakage Current				50	μΑ	0 - 5.5V	V _{OUT} = 2.7V; OE _n = 2.0V	
I _{OZL}	Output Leakage Current				-50	μΑ	0 - 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$	
Ios	Output Short-Circuit Current		-100		-275	mA	Max	V _{OUT} = 0.0V	
I _{CEX}	Output High Leakage Current				50	μA	Max	V _{OUT} = V _{CC}	
I _{ZZ}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Others GND	
I _{CCH}	Power Supply Current				50	μA	Max	All Outputs HIGH	
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW	
I _{CCZ}	Power Supply Current				50	μA	Max	$\overline{OE}_n = V_{CC};$	
								All Others at V _{CC} or Ground	
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			1.5	mA	Max	$V_I = V_{CC} - 2.1V$	
		Outputs TRI-STATE			1.5	mA		Enable Input V _I = V _{CC} - 2.1V	
		Outputs TRI-STATE			50	μA		Data Input V _I = V _{CC} - 2.1V	
								All Others at V _{CC} or Ground	
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open	
	(Note 4)				0.1	MHz		\overline{OE}_n = GND, (Note 3)	
								One Bit Toggling, 50% Duty Cycle	

Note 3: For 8 bits toggling, I_{CCD} < 0.8 mA/MHz.

Note 4: Guaranteed, but not tested.


Symbol	DI Parameter 54ABT		ABT	Units	Fig. No.
		T _A = -55°C to +125°C			
		V _{CC} = 4	V _{CC} = 4.5V-5.5V		
		C _L =	50 pF		
		Min	Max		
t _{PLH}	Propagation Delay	0.8	5.5	ns	Figure 5
t _{PHL}	Data to Outputs	1.0	5.5		
t _{PZH}	Output Enable	0.8	7.5	ns	Figure 4
t_{PZL}	Time	0.8	7.7		
t _{PHZ}	Output Disable	1.0	7.5	ns	Figure 4
t _{PLZ}	Time	1.0	7.2		

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 0V
C _{OUT} (Note 5)	Output Capacitance	9.0	pF	V _{CC} = 5.0V

Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

AC Loading

Amplitude Rep. Rate 3.0V 1 MHz 500 ns 2.5 ns 2.5 ns

FIGURE 3. Test Input Signal Requirements

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

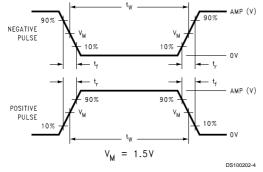
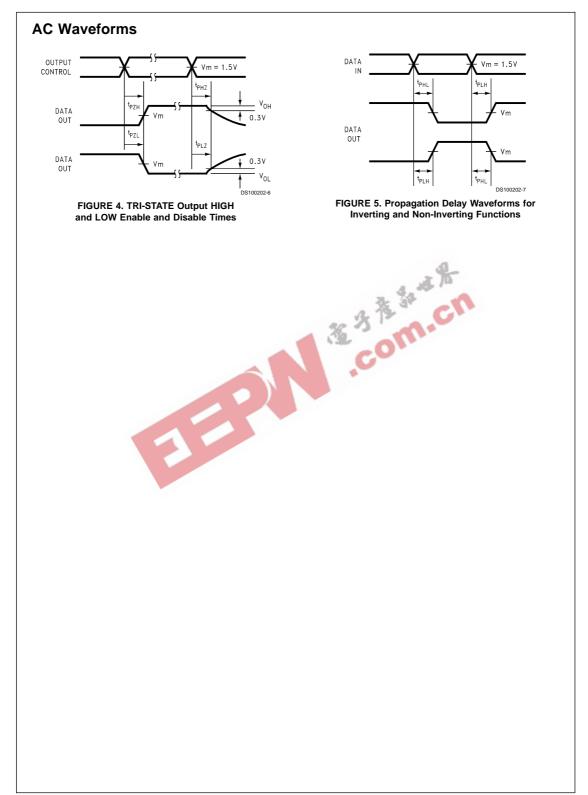
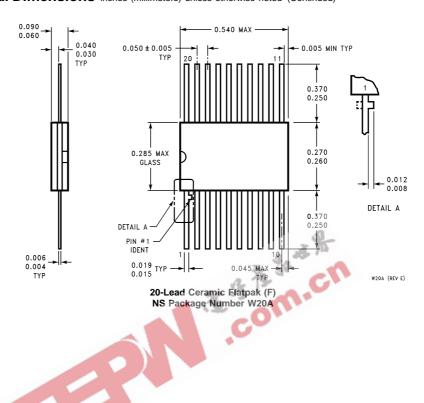




FIGURE 2. Test Input Signal Levels



7

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179