

## 54FCT240

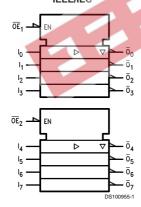
### Octal Buffer/Line Driver with TRI-STATE® Outputs

### **General Description**

The 54FCT240 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

#### **Features**

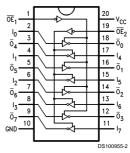
- Inverting TRI-STATE outputs drive bus lines or buffer memory address registers
- Output sink capability of 32 mA, source capability of 12 mA
- TTL input and output compatible levels
- CMOS power consumption
- Standard Microcircuit Drawing (SMD) 5962-8765501


3\_

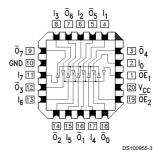
### **Ordering Code:**

| Military     | Package | Package Description                           |
|--------------|---------|-----------------------------------------------|
|              | Number  | 3- 34 A                                       |
| 54FCT240DMQB | J20A    | 20-Lead Ceramic Dual-In-Line                  |
| 54FCT240FMQB | W20A    | 20-Lead Cerpak                                |
| 54FCT240LMQB | E20A    | 20-Lead Ceramic Leadless Chip Carrier, Type C |

### **Logic Symbol**


### IEEE/IEC




| Pin Names                             | Description                    |
|---------------------------------------|--------------------------------|
| $\overline{OE}_1$ , $\overline{OE}_2$ | TRI-STATE Output Enable Inputs |
| I <sub>0</sub> -I <sub>7</sub>        | Inputs                         |
| $\overline{O}_0 - \overline{O}_7$     | Outputs                        |

# Connection Diagrams

# Pin Assignment for DIP and Flatpak



# Pin Assignment for LCC



TRI-STATE® is a registered trademark of National Semiconductor Corporation FACT® is a registered trademark of Fairchild Semiconductor Corporation.

### Connection Diagrams (Continued)

| Inp | uts            | Outputs               |
|-----|----------------|-----------------------|
| ŌĒ₁ | I <sub>n</sub> | (Pins 12, 14, 16, 18) |
| L   | L              | Н                     |
| L   | Н              | L                     |
| Н   | X              | Z                     |

| Inp | uts            | Outputs           |  |
|-----|----------------|-------------------|--|
| ŌĒ₂ | l <sub>n</sub> | (Pins 3, 5, 7, 9) |  |
| L   | L              | Н                 |  |
| L   | Н              | L                 |  |
| Н   | ×              | Z                 |  |

- H = HIGH Voltage Level L = LOW Voltage Level

- X = Immaterial
  Z = High Impedance



#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature -65°C to +150°C
Ambient Temperature under Bias -55°C to +125°C
Junction Temperature under Bias

Ceramic –55°C to +175°C

V<sub>CC</sub> Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 1) -0.5V to +7.0V Input Current (Note 1) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-off State -0.5V to 5.5V

in the HIGH State  $$-0.5\mbox{V}$\,{\rm to}$\,\mbox{V}_{\rm CC}$$ 

Current Applied to Output

in LOW State (Max) twice the rated I<sub>OL</sub> (mA)

# Recommended Operating Conditions

Free Air Ambient Temperature

Military -55°C to +125°C

Supply Voltage

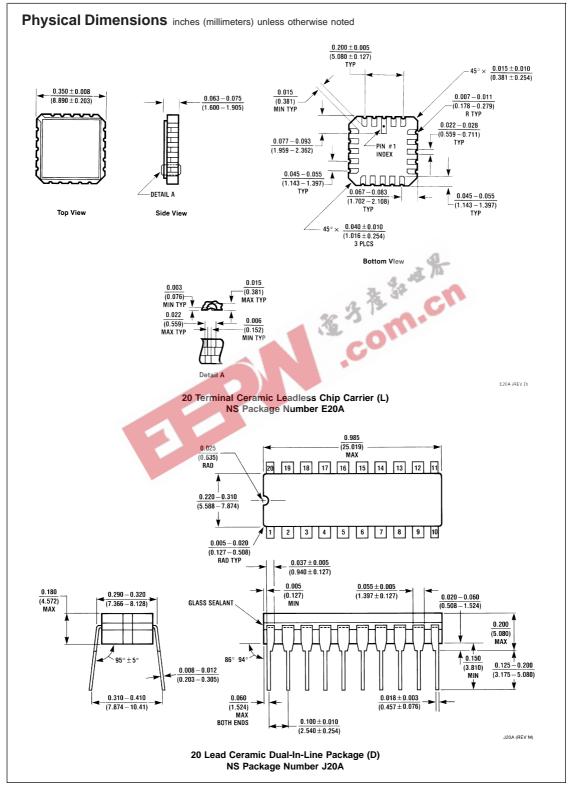
Military +4.5V to +5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT® circuits outside databook specifications.

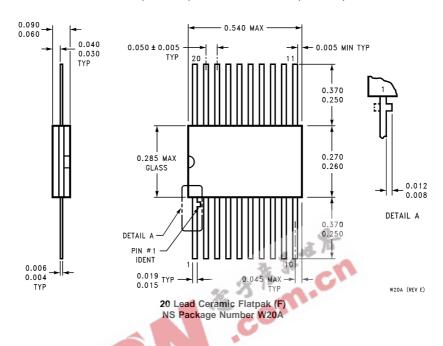
### DC Characteristics for 'FCT Family Devices

| Symbol           | P                       | arameter         | FC.  | T240 | l lmita | V               | Conditions                                                                                                                  |
|------------------|-------------------------|------------------|------|------|---------|-----------------|-----------------------------------------------------------------------------------------------------------------------------|
|                  |                         |                  | Min  | Max  | Units   | V <sub>cc</sub> | A 70                                                                                                                        |
| V <sub>IH</sub>  | Input HIGH Volt         | age              | 2.0  |      | V       | 3. W            | Recognized HIGH Signal                                                                                                      |
| V <sub>IL</sub>  | Input LOW Volta         | age              |      | 0.8  | V       | 2 13            | Recognized LOW Signal                                                                                                       |
| V <sub>CD</sub>  | Input Clamp Dic         | ode Voltage      |      | -1.2 | V       | Min             | $I_{IN} = -18 \text{ mA}$                                                                                                   |
| V <sub>OH</sub>  | Output HIGH             | 54FCT            | 4.3  |      | V       | Min             | I <sub>OH</sub> = -300 μA                                                                                                   |
|                  | Voltage                 | 54FCT            | 2.4  |      | V       | Min             | I <sub>OH</sub> = -12 mA                                                                                                    |
| V <sub>OL</sub>  | Output LOW              | 54FCT            |      | 0.2  | V       | Min             | I <sub>OL</sub> = 300 μA                                                                                                    |
|                  | Voltage                 | 54FCT            | - // | 0.5  | V       | Min             | I <sub>OL</sub> = 32 mA                                                                                                     |
| I <sub>IH</sub>  | Input HIGH Cur          | rent             | 1    | 5    | μA      | Max             | $V_{IN} = 5.5V$                                                                                                             |
| I <sub>IL</sub>  | Input LOW Curr          | ent              |      | -5   | μA      | Max             | $V_{IN} = 0.0V$                                                                                                             |
| I <sub>OZH</sub> | High Impedance          | e Output Current |      | 10   | μA      | Max             | $V_{IN} = 5.5V$                                                                                                             |
| I <sub>OZL</sub> | High Impedance          | e Output Current |      | -10  | μA      | Max             | $V_{IN} = 0.0V$                                                                                                             |
| Ios              | Output Short-Ci         | rcuit Current    |      | -60  | mA      | Max             | $V_{OUT} = 0.0V$                                                                                                            |
| Icca             | Power Supply C          | Current          |      | 1.5  | mA      | Max             | $V_{IN} = 0.2V$ or $V_{IN} = 5.3V$                                                                                          |
| $\Delta I_{CC}$  | Power Supply C          | Current          |      | 2.0  | mA      | Max             | $V_{IN} = 3.4V$                                                                                                             |
| I <sub>CCT</sub> | Total Power Sup         | pply Current     |      | 4.8  | mA      | Max             | $V_{IN} = 3.4V$ or $V_{IN} = GND$ , $\overline{OE} = GND$ , $f_I = 10Mhz$ , outputs open, one bit toggling - 50% duty cycle |
|                  |                         |                  |      | 4.0  | mA      | Max             | $V_{IN}$ = 5.3V or $V_{IN}$ = 0.2V, $\overline{OE}$ = GND, $f_I$ = 10Mhz, outputs open, one bit toggling - 50% duty cycle   |
| I <sub>CCD</sub> | Dynamic I <sub>CC</sub> | No Load          |      | 0.25 | mA/MHz  | Max             | Outputs Open, $\overline{OE}$ = GND, One<br>Bit Toggling, 50% Duty Cycle                                                    |

www.national.com


| Symbol           | Parameter         | 54F0                   | Units       | Fig. |     |
|------------------|-------------------|------------------------|-------------|------|-----|
|                  |                   | T <sub>A</sub> = -55°C | C to +125°C |      | No. |
|                  |                   | $V_{CC} = 4$           | .5V-5.5V    |      |     |
|                  |                   | C <sub>L</sub> =       | 50 pF       |      |     |
|                  |                   | Min                    | Max         |      |     |
| t <sub>PLH</sub> | Propagation Delay | 1.5                    | 9.0         | ns   |     |
| t <sub>PHL</sub> | Data to Outputs   | 1.5                    | 9.0         |      |     |
| t <sub>PZH</sub> | Output Enable     | 1.5                    | 10.5        | ns   |     |
| t <sub>PZL</sub> | Time              | 1.5                    | 10.5        |      |     |
| t <sub>PHZ</sub> | Output Disable    | 1.5                    | 12.5        | ns   |     |
| $t_{PLZ}$        | Time              | 1.5                    | 12.5        |      |     |

### Capacitance


| Symbol          | Parameter         | Max | Units | Conditions             |
|-----------------|-------------------|-----|-------|------------------------|
| C <sub>IN</sub> | Input Capacitance | 10  | pF    | V <sub>CC</sub> = OPEN |
| C <sub>PD</sub> | Power Dissipation | 12  | pF    | $V_{CC} = 5.0V$        |
|                 | Capacitance       |     | 700   |                        |
|                 |                   | N   | CO    | M.C.                   |



www.national.com



#### Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor

Corporation
Americas
Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

National Semiconductor

National Semiconductor
Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tet: +49 (0) 1 80-530 85 85
English Tet: +49 (0) 180-532 78 32
Français Tet: +49 (0) 80-532 93 85
Italiano Tet: +49 (0) 180-534 16 80

National Semiconductor Asia Pacific Custome Fax: 65-2504466

Email: sea.support@nsc.com

National Semiconductor Janan I td Tel: 81-3-5639-7560 Fax: 81-3-5639-7507