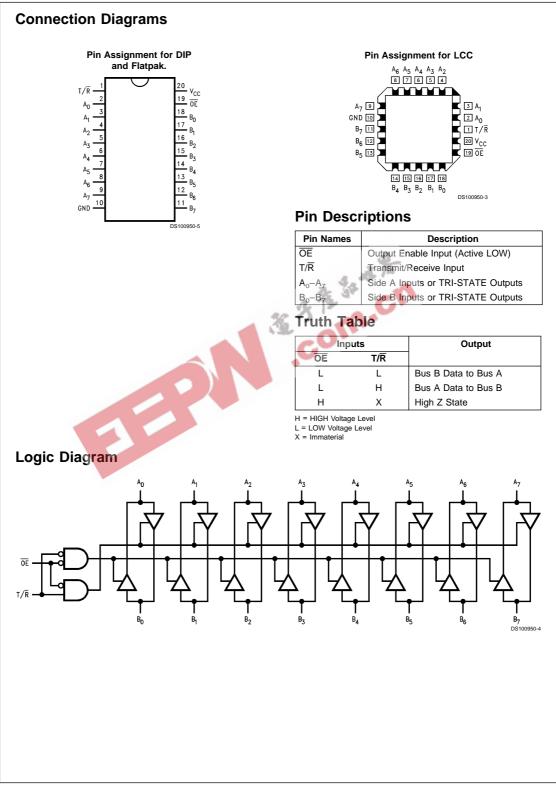
National Semiconductor

54FCT245 Octal Bidirectional Transceiver with TRI-STATE® Outputs

General Description


The 'FCT245 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 48 mA on both the A and B ports. The Transmit/Receive (T/ \overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports; Receive (active LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a High Z condition.

Features

- TTL input and output level compatible
 A and B output sink capability of 48 mA, source
- capability of 12 mA
- CMOS power consumption
- Standard Microcircuit Drawing (SMD) 5962-8762901

Ordering Code: Military Package Package Description Number 54FCT245DMQB 20-Lead Ceramic Dual-In-Line J20A 20-Lead Cerpak 54FCT245FMQB W20A 54FCT245LMQB E20A 20-Lead Ceramic Leadless Chip Carrier, Type C Logic Symbol A2 A۸ A₆ Α3 As B B B₂ Β. B B TRI-STATE® is a registered trademark of National Semiconductor Corporation © 1998 National Semiconductor Corporation DS100950 www.national.com

August 1998

www.national.com

2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-off State	-0.5V to 5.5V

in the HIGH State Current Applied to Output in LOW State (Max)

–0.5V to $V_{\rm CC}$

twice the rated $I_{\rm OL}$ (mA)

Recommended Operating Conditions

Free Air Ambient Temperature

Military

–55°C to +125°C

Supply Voltage Military +4.5V to +5.5V Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Symbol	Parameter		FCT245		Units	v	Conditions	
			Min	Max	Units	Vcc	A TA	
VIH	Input HIGH Voltage		2.0		V	A. 73	Recognized HIGH Signal	
VIL	Input LOW Voltage			0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{\rm IN} = -18 \text{ mA} (\overline{\rm OE}, \text{ T/R})$	
V _{OH}	Output HIGH Voltage	54FCT	4.3		V	Min	$T_{OH} = -300 \text{ uA} (A_n, B_n)$	
		54FCT	2.4		V 🧹	Min	$I_{OH} = -12 \text{ mA} (A_n, B_n)$	
V _{OL}	Output LOW Voltage	54FCT		0.2	V	Min	$I_{OL} = 300 \text{ uA} (A_n, B_n)$	
		54FCT		0.55	V	Min	$I_{OL} = 48 \text{ mA} (A_n, B_n)$	
I _{IH}	Input HIGH Cu	Input HIGH Current		5	μA	Max	$V_{IN} = 2.7V \ (\overline{OE}, \ T/\overline{R})$	
			5	5			$V_{IN} = V_{CC} (\overline{OE}, T/\overline{R})$	
I _{BVIT}	Input HIGH Current Breakdown Test (I/O)			20	μA	Max	V _{IN} = 5.5V (A _n , B _n)	
I _{IL}	Input LOW Current			-5	μA	Max	$V_{IN} = 0.0V \ (\overline{OE}, T/\overline{R})$	
l _{os}	Output Short-Circuit Current			-60	mA	Max	$V_{OUT} = 0.0V (A_n, B_n)$	
Iccq	Power Supply Current			1.5	mA	Max	$V_{\rm IN}$ = 0.2V or $V_{\rm IN}$ = 5.3V, $V_{\rm CC}$ = 5.5V	
ΔI_{CC}	Power Supply Current		2.0		mA Max		V _{CC} = 5.5V, V _{IN} = 3.4V	
I _{CCT}	Total Power Su	pply Current		6.0	mA		$ \begin{array}{l} V_{IN}=3.4V \mbox{ or } V_{IN}=GND, \overline{OE}=\\ T/\overline{R}=GND, V_{CC}=5.5V, f_I=\\ 10Mhz, \mbox{ outputs open, one bit}\\ toggling - 50\% duty cycle \end{array} $	
				5.5	mA	Max	$ \begin{array}{l} V_{IN}=5.3V \text{ or } V_{IN}=0.2V, \overline{OE}=\\ T/\overline{R}=GND, \ V_{CC}=5.5V, \ f_I=\\ 10Mhz, \ outputs \ open, \ one \ bit\\ toggling \ -50\% \ duty \ cycle \end{array} $	
I _{CCD}	Dynamic I _{CC} (Note 3)			0.4	mA/ MHz	Max	Outputs Open, \overline{OE} =GND, T/ \overline{R} = GND or V _{CC} One Bit Toggling, 50% Duty Cycle	

Note 3: Guaranteed but not tested.

Symbol	Parameter	54	FCT	Units	Fig. No.
		T _A = -55°(C to +125°C		
		$V_{cc} = 4$.5V–5.5V		
		C _L = 50 pF			
		Min	Max		
t _{PLH}	Propagation Delay	1.5	7.5	ns	Figure 4
t _{PHL}	Data to Outputs	1.5	7.5		
t _{PZH}	Output Enable	1.5	10.0	ns	Figure 5
t _{PZL}	Time	1.5	10.0		
t _{PHZ}	Output Disable	1.5	10.0	ns	Figure 5
t _{PLZ}	Time	1.5	10.0		

Capacitance

Capacitance	-				
Symbol	Parameter	Max Units		Conditions	
		3.	34	T _A = 25°C	
C _{IN}	Input Capacitance	10.0	pF	$V_{CC} = 0V (\overline{OE} , T/\overline{R})$	
C _{I/O} (Note 4)	I/O Capacitance	12.0	pF	$V_{CC} = 5.0V (A_n, B_n)$	

Note 4: CI/O is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

AC Loading

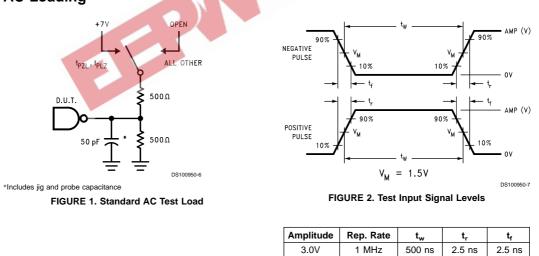
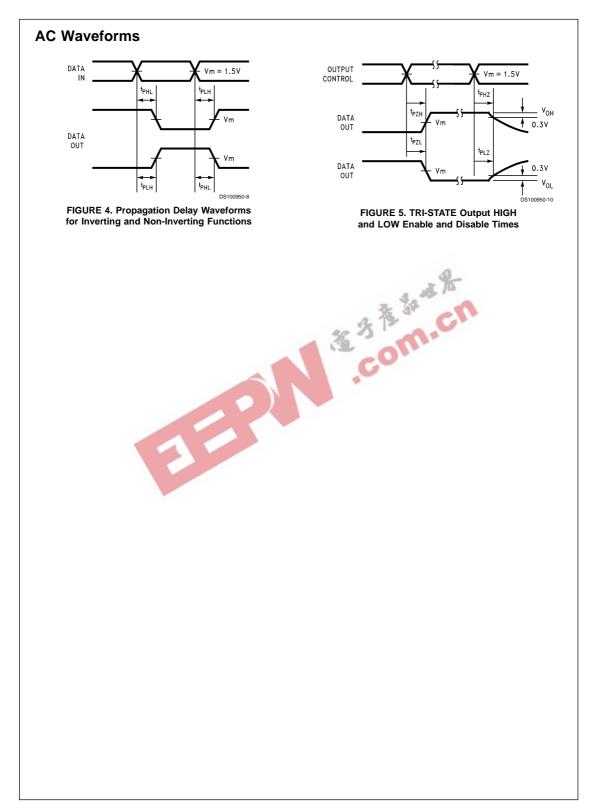
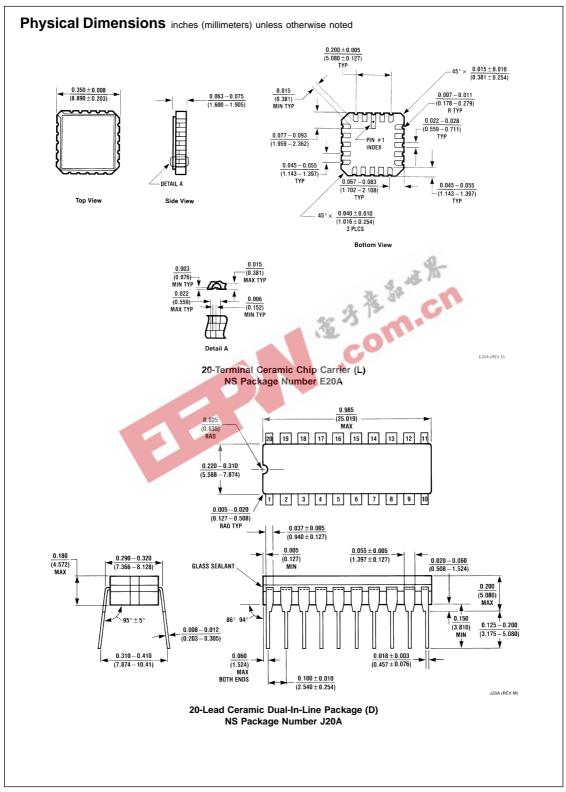
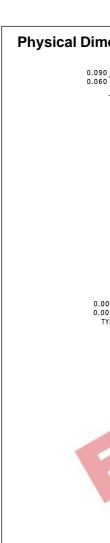
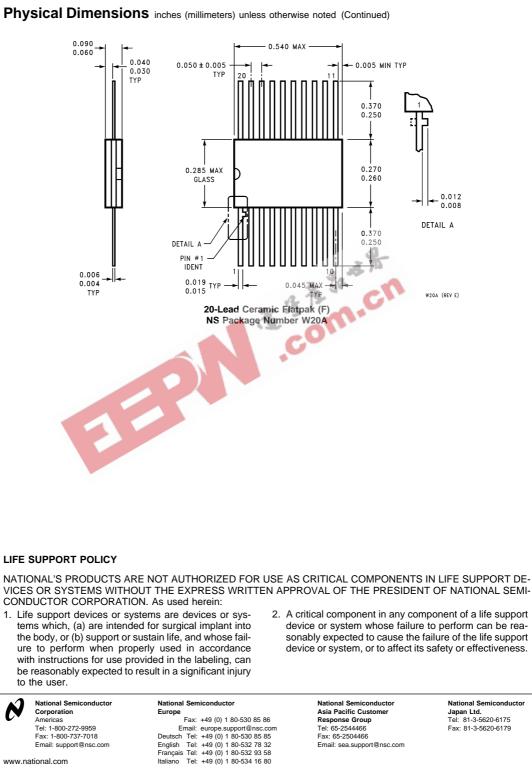




FIGURE 3. Test Input Signal Requirements


www.national.com



www.national.com

Email: support@nsc.com

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Fax: 65-2504466

Email: sea.support@nsc.com