




Symbol	Parameter					Ratings	;	Units			
V _{DSS}	Drain to Source Voltage				40		V				
V _{GS}	Gate to Source Voltage					±20		V			
Drain Current Continuous (V _{GS}			(_{GS} = 10V)	= 10V) (Note 1)					145		
I _D	Continuous (V_{GS} = 10V, with $R_{\theta JA}$ = 52°C/W)						20		Α		
D	Pulsed				Figure 4	ł	1				
E _{AS}	Single Pulse Avalanche Energy (Note 2)			535			mJ				
	Power Dissipation					. ,		153		W	
P _D	Derate abo	ove 25°C						1.02			W/º
T _J , T _{STG}									55 to +1	75	°C
Γ herm R _{θJC} R _{θJA}	Thermal R	racteristics Resistance, Junctic Resistance, Junctic		ent TO-25	i2, 1in ² copp	er pad	area		0.98 52		°C/\ °C/\
	ge Mark	king and Or	dering		mation Reel Siz	ze	Тар	e Width		Quant	tity
FDD	08444	FDD8444	TO-25	52AA	13"	X	1	2mm		2500 units	nits
Electri	cal Cha	aracteristics	S T _J = 25°	C unless	otherwise no	oted	m -				
Symbol		Parameter			Test Cond	itions		Min	Тур	Max	Unit
Off Cha	racterist	ics									
) N							
B _{VDSS}	Drain to Se	ource Breakdown	Voltage	I _D = 250	0μA, V _{GS} = 0	IV		40	-	-	V
				I _D = 250 V _{DS} = 3				40	-	- 1	-
B _{VDSS} DSS		ource Breakdown Voltage Drain Cul		V _{DS} = 3 V _{GS} = 0	32V 0V		150°C	40 - -	-	- 1 250	V µA
	Zero Gate		rrent	V _{DS} = 3	32V 0V		150°C	40 - - -	- - - -		-
DSS GSS	Zero Gate	Voltage Drain Cur ource Leakage Cur	rrent	V _{DS} = 3 V _{GS} = 0	32V 0V		150°C	40 - - -	-	250	μA
DSS GSS Dn Cha	Zero Gate Gate to Sc racteristi	Voltage Drain Cur ource Leakage Cur	rrent	V _{DS} = 3 V _{GS} = 0 V _{GS} = 1	32V 0V ±20V	T _J =	150°C	40 - - - 2	- - - 2.5	250	μA
DSS GSS	Zero Gate Gate to Sc racteristi	Voltage Drain Cur ource Leakage Cur ics	rrent	$V_{DS} = C$ $V_{GS} = C$ $V_{GS} = C$ $V_{GS} = C$	32V 0V ±20V V _{DS} , I _D = 250	Τ _J =	150°C	-	- - - 2.5 4	250 ±100	μA nA
DSS GSS Dn Cha	Zero Gate Gate to Sc racterist	Voltage Drain Cur ource Leakage Cur ics	rrent rrent /oltage	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$ $I_D = 50$	32V $V_{DS}, I_D = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$	T _J = 0μΑ	150°C	-	-	250 ±100	μA nA V
DSS Dn Cha V _{GS(th)} ⁽ DS(on)	Zero Gate Gate to Sc racteristi Gate to Sc Drain to S	Voltage Drain Cur burce Leakage Cur ics burce Threshold V	rrent rrent /oltage	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$ $I_D = 50$	32V $V_{DS}, I_D = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$	T _J = 0μΑ	150°C	-	4	250 ±100 4 5.2	μA nA V
DSS Dn Cha V _{GS(th)} ⁽ DS(on) Dynami	Zero Gate Gate to Sc racteristi Gate to Sc Drain to S	Voltage Drain Cur burce Leakage Cur ics burce Threshold V bource On Resistan	rrent rrent /oltage	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$	32V 0V ±20V VDS, ID = 250 A, VGS = 10V A, VGS = 10V 5°C	T _J = 0μΑ /	150°C	-	4	250 ±100 4 5.2	μA nA V
DSS Dn Cha V _{GS(th)} ⁽ DS(on) Dynami C _{iss}	Zero Gate Gate to Sc racteristi Gate to Sc Drain to S C Charace Input Cap	Voltage Drain Cur burce Leakage Cur ics burce Threshold V bource On Resistan	rrent rrent /oltage	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$ $V_{DS} = 2$	$32V$ $V_{DS}, I_{D} = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $25V, V_{GS} = 0$	T _J = 0μΑ /	150°C	- - - - -	4	250 ±100 4 5.2 9.4	μA nA V mΩ
DSS Coss Dn Cha V _{GS(th)} DS(on) Dynami C _{iss} C _{oss}	Zero Gate Gate to So racteristi Gate to So Drain to S c Charac Input Cap Output Cap	Voltage Drain Cur burce Leakage Cur ics burce Threshold V source On Resistan cteristics acitance apacitance	rrent /oltage nce	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$	$32V$ $V_{DS}, I_{D} = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $25V, V_{GS} = 0$	T _J = 0μΑ /	150°C	- - - - -	4 7.2 6195 585	250 ±100 4 5.2 9.4	μA nA V mΩ
DSS GSS Dn Cha V _{GS(th)} DS(on) Dynami C _{iss} C _{oss} C _{rss}	Zero Gate Gate to So racteristi Gate to So Drain to S c Charac Input Cap Output Cap	Voltage Drain Cur burce Leakage Cu ics ource Threshold V source On Resistan cteristics acitance apacitance fransfer Capacitan	rrent /oltage nce	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$ $V_{DS} = 2$	$32V$ $420V$ $V_{DS}, I_{D} = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $C^{2}5V, V_{GS} = 0$ $4z$	T _J = 0μΑ /	150°C	- - - - - -	4 7.2 6195 585 332	250 ±100 4 5.2 9.4	μA nA V mΩ pF pF
DSS GSS Dn Cha V _{GS(th)} DS(on) DS(on) Dynami C _{iss} C _{rss} R _G	Zero Gate Gate to Sc Gate to Sc Drain to S C Charac Output Cap Output Ca Reverse T Gate Resi	Voltage Drain Cur burce Leakage Cu ics ource Threshold V cource On Resistan cteristics acitance apacitance fransfer Capacitan istance	rrent /oltage nce	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$	32V $V_{DS}, I_D = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $25V, V_{GS} = 0$ 1z	T _J = 0μΑ /	150°C	- - - - - -	4 7.2 6195 585	250 ±100 4 5.2 9.4 - - - -	μA nA V mΩ pF pF Ω
DSS GSS Dn Cha V _{GS(th)} DS(on) Dynami C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)}	Zero Gate Gate to Sc Gate to Sc Drain to S C Charac Input Cap Output Ca Reverse T Gate Resi Total Gate	Voltage Drain Cur burce Leakage Cur ics ource Threshold V cource On Resistan cteristics acitance apacitance fransfer Capacitan istance a Charge at 10V	rrent /oltage nce	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$ $V_{GS} = 0$	$32V$ $V_{DS}, I_{D} = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $C^{50}C$ $25V, V_{GS} = 0$ $1z$ $1z$ $0 to 10V$	T _J = 0μΑ /	150°C	- - - - - -	4 7.2 6195 585 332 1.9 89	250 ±100 4 5.2 9.4 - - - - 116	μA nA V mΩ pF pF pF Ω nC
DSS GSS Dn Chai $\sqrt{GS(th)}$ DS(on) Dynami C_{iss} C_{rss} C_{rss} C_{g} $Q_{g(TOT)}$ $Q_{g(5)}$	Zero Gate Gate to So racteristi Gate to So Drain to S c Charac Input Cap Output Ca Reverse T Gate Resi Total Gate Total Gate	Voltage Drain Cur purce Leakage Cur ics ource Threshold V cource On Resistan cteristics acitance apacitance fransfer Capacitan istance a Charge at 10V a Charge at 5V	rrent /oltage nce	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$ $V_{GS} = 0$ $V_{GS} = 0$	32V $V_{DS}, I_D = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $5^{\circ}C$ 25V, $V_{GS} = 0$ 1z	T _J =	= 20V	- - - - - - - - - - - -	4 7.2 6195 585 332 1.9 89 43	250 ±100 4 5.2 9.4 - - - - 116 56	μA nA V mΩ pF pF pF Ω nC
DSS GSS Dn Chai $\sqrt{GS(th)}$ $\overline{DS(on)}$ Dynami \overline{D}_{iss} \overline{D}_{oss} \overline{D}_{rss} $\overline{Q}_{g(TOT)}$ $\overline{Q}_{g(5)}$ $\overline{Q}_{g(TH)}$	Zero Gate Gate to So racteristi Gate to So Drain to S c Charac Input Capa Output Ca Reverse T Gate Resi Total Gate Total Gate Threshold	Voltage Drain Cur burce Leakage Cur ics ource Threshold V source On Resistan cteristics acitance apacitance fransfer Capacitan istance a Charge at 10V a Charge at 5V I Gate Charge	rrent rrent /oltage nce	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$ $V_{GS} = 0$	32V $V_{DS}, I_D = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $5^{\circ}C$ 25V, $V_{GS} = 0$ 1z	$T_{J} =$	= 20V 50A	- - - - - -	4 7.2 6195 585 332 1.9 89 43 11	250 ±100 4 5.2 9.4 - - - - 116	μA nA V mΩ pF pF pF Ω nC nC
DSS GSS Dn Cha V _{GS(th)} DS(on) Dynami C _{iss}	Zero Gate Gate to So racteristi Gate to So Drain to S c Charac Output Cap Output Cap Reverse T Gate Resi Total Gate Threshold Gate to So	Voltage Drain Cur purce Leakage Cur ics ource Threshold V cource On Resistan cteristics acitance apacitance fransfer Capacitan istance a Charge at 10V a Charge at 5V	rrent /oltage nce nce e	$V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_D = 50$ $I_D = 50$ $T_J = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$ $V_{GS} = 0$ $V_{GS} = 0$	32V $V_{DS}, I_D = 250$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $5^{\circ}C$ 25V, $V_{GS} = 0$ 1z	$T_{J} =$	= 20V	- - - - - - - - - - - - -	4 7.2 6195 585 332 1.9 89 43	250 ±100 4 5.2 9.4 - - - 116 56 14.3	μA nA V mΩ pF pF pF Ω nC nC

FDD8444 N-Channel PowerTrench[®] MOSFET

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Switch	ing Characteristics					
on	Turn-On Time		-	-	135	ns
d(on)	Turn-On Delay Time		-	12	-	ns
r	Turn-On Rise Time	$V_{DD} = 20V, I_{D} = 50A$	-	78	-	ns
d(off)	Turn-Off Delay Time	–––– V _{GS} = 10V, R _{GS} = 2Ω	-	48	-	ns
t _f	Turn-Off Fall Time		-	15	-	ns
off	Turn-Off Time		-	-	95	ns
	ource Diode Characteristics	5			I	1
1	Source to Drain Diado Voltago	I _{SD} = 50A	-	0.9	1.25	V
/ _{SD}	Source to Drain Diode Voltage	I _{SD} = 25A	-	0.8	1.0	v
rr	Reverse Recovery Time		-	39	51	ns
ג. גיי	Reverse Recovery Charge	$I_F = 50A, dI_F/dt = 100A/\mu s$	-	45	59	nC
		· con				

AIRCHIL

SEMICONDUCTOR

FAIRCHILD SEMICONDUCTOR TRADEMARKS

	red and unregistered trac stive list of all such trader		nductor owns or is authoriz	zed to use and is not
ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER [®]	UniFET™
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™	UltraFET®
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™	VCX™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™	Wire™
CoolFET™	I ² C™	PACMAN™	SuperFET™	
CROSSVOLT™	<i>i-Lo</i> ™	POP™	SuperSOT™-3	
DOME™	ImpliedDisconnect [™]	Power247™	SuperSOT™-6	
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8	
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™	
EnSigna™	LittleFET™	PowerTrench [®]	TCM™	
FACT®	MICROCOUPLER™	QFET [®]	TinyBoost™	
FAST [®]	MicroFET™	QS™	TinyBuck™	
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™	
FPS™	MICROWIRE™	Quiet Series™	TinyPower™	
FRFET™	MSX™	RapidConfigure™	TinyLogic®	
	MSXPro™	RapidConnect™	TINYOPTO™	
Across the board. Arour	nd the world.™	µSerDes™	TruTranslation™	
The Power Franchise [®]		ScalarPump™	UHC®	
Programmable Active D	roop™		1. 18. 14	
		10	4.4	

DISCLAIMER

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

As used nerein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 121