

Current Transducers HY 5 to 25-P/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit) with unipolar power supply.

Primary nominal

rms current

V_{OUT}

 $\mathbf{R}_{\mathrm{OUT}}$

T_s

Electrical data

Primary current

measuring range

Output internal resistance

Load resistance

Output voltage @ + I_{PN} , $R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$

Output voltage @ - I_{PN} , R_{L} = 10 k Ω , T_{A} = 25°C

I _{PN} (A)	I _P (A)	(mm)			
5	± 15	Ø 0.7		HY 05-P/	SP1
10	± 30	Ø 1.1		HY 10-P/	SP1
12.5	± 37.5	Ø 1.4		HY 12-P/	SP1
15	± 45	Ø 1.4		HY 15-P/	SP1
20	± 60	2 x Ø 1.2 1)		HY 20-P/	SP1
25	± 75	2 x Ø 1.4 1)		HY 25-P/	SP1
v _c	Supply voltage (± 5 %)		single	+5	V DC
I _c	Current consumption			10	mA
Î	Overload capability (1 ms)			50 x I _{PN}	40
$\mathbf{V}_{_{d}}$	R.m.s. voltage for AC isolation test, 50/60Hz, 1 mn			2.5	kV
V _b	R.m.s. rated voltage, safe separation 500 ²⁾				
R	Isolation resistance @ 500	O VDC		> 1000	$M\Omega$

Primary

conductor

Type

2.5

1.5

100

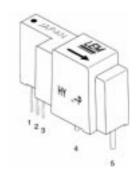
- 25 .. + 85

EN 50178

< 14

> 1

_				
Accı	uracy - Dynamic performance data			
X & _L V _{OE} V _{OH}	Accuracy @ I_{PN} , $T_A = 25^{\circ}$ C (without offse Linearity $^{3)}$ (0 $\pm I_{PN}$) Electrical offset voltage, $T_A = 25^{\circ}$ C Hysteresis offset voltage @ $I_P = 0$	t)	< ± 2 < ± 1	
V _{OT}	after an excursion of 1 x I_{PN} Thermal drift of V_{OE}	typ max	< ± 10 ± 1.5 ± 3	mV mV/K mV/K
TCE _G t _r di/dt f	Thermal drift of the gain (% of reading) Response time @ 90% of I _p di/dt accurately followed Frequency bandwidth ⁴⁾ (- 3 dB)		< ± 0.1 < 5 > 50 DC 50	%/K µs A/µs kHz
Gene	eral data			
T _△	Ambient operating temperature		- 10 +	80 °C


Notes: 1) Conductor terminals are soldered together.

²⁾ Pollution class 2, overvoltage category III.

Ambient storage temperature

- 3) Linearity data exclude the electrical offset.
- ⁴⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.
- 5) Please consult characterisation report for more technical details and application advice.

5 .. 25 A l_{pN}

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V~
- Compact design for PCB mounting
- Low power consumption
- Extended measuring range (3 x Ipn)
- Insulated plastic case recognized according to UL 94-V0.

Advantages

 $M\Omega$

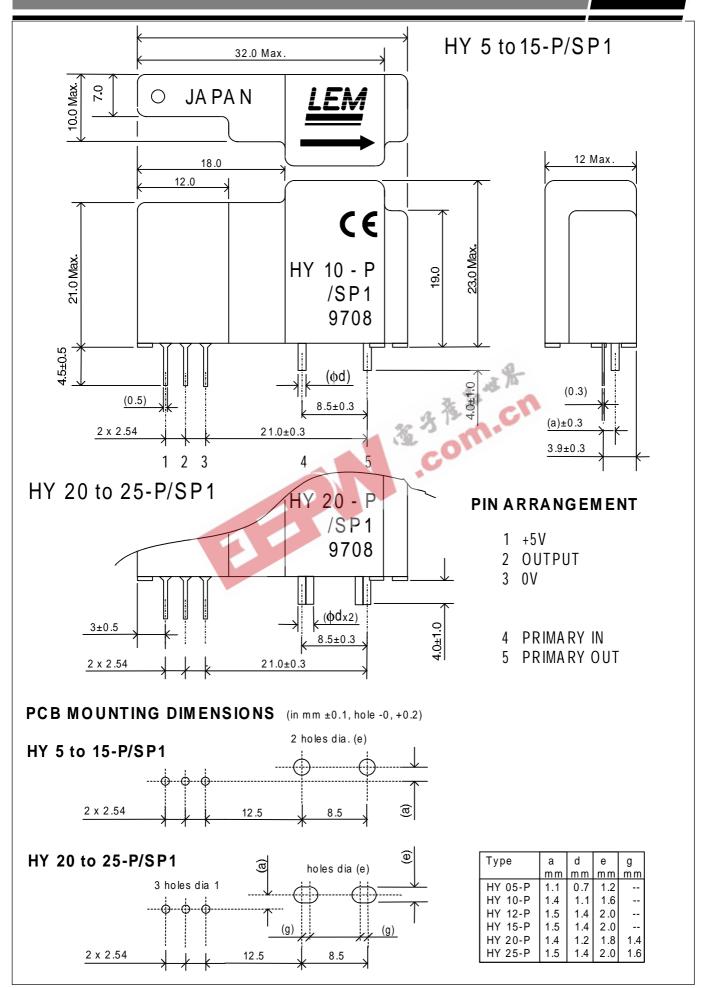
V

Ω

 $k\Omega$

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity against external interference.

Applications


- General purpose inverters
- AC variable speed drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched-Mode Power Supplies (SMPS).

980723/2

Mass

Standards 5)

