

MOSFET Maximum Ratings T_C= 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			25	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous (Package Limited)				35	
	-Continuous (Die Limited)				98	A
		-Pulsed		(Note 1) 305	
E _{AS}	Single Pulse Avalanche Energy (Note 2)) 91	mJ	
P _D	Power Dissipation			88	W	
T _J , T _{STG}	Operating and Storage Temperature			-55 to 175	°C	
Therma	Chara	acteristics				
$R_{\theta JC}$	Thermal Resistance, Junction to Case TO_252, TO_251				1.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient TO_252, TO_251				100	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient TO-252,1in ² copper pad area				a 52	°C/W
Package	Mark	ing and Ord	ering Informa	ation		I
Device Ma	arking	Device	Package	Reel Size	Tape Width	Quantity
FDD87	96	FDD8796	TO-252AA	13"	12mm	2500 units

FDU8796

FDU8796_F071

FDU8796

FDU8796

1

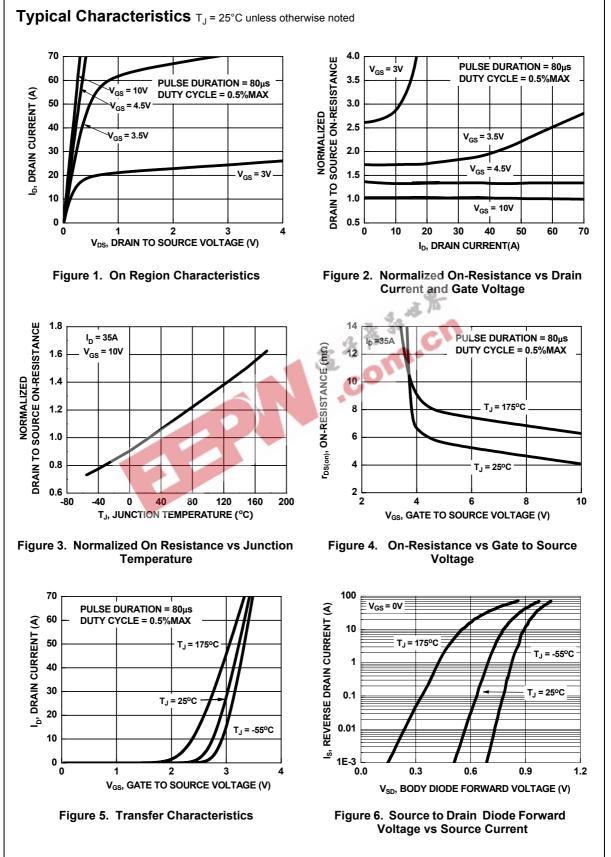
N/A (Tube)

N/A (Tube)

N/A

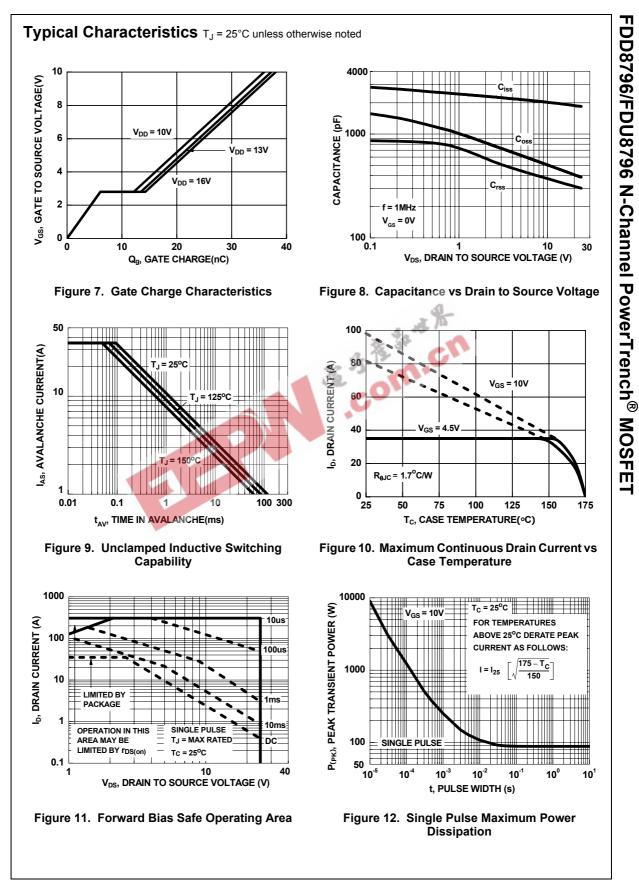
N/A

TO-251AA

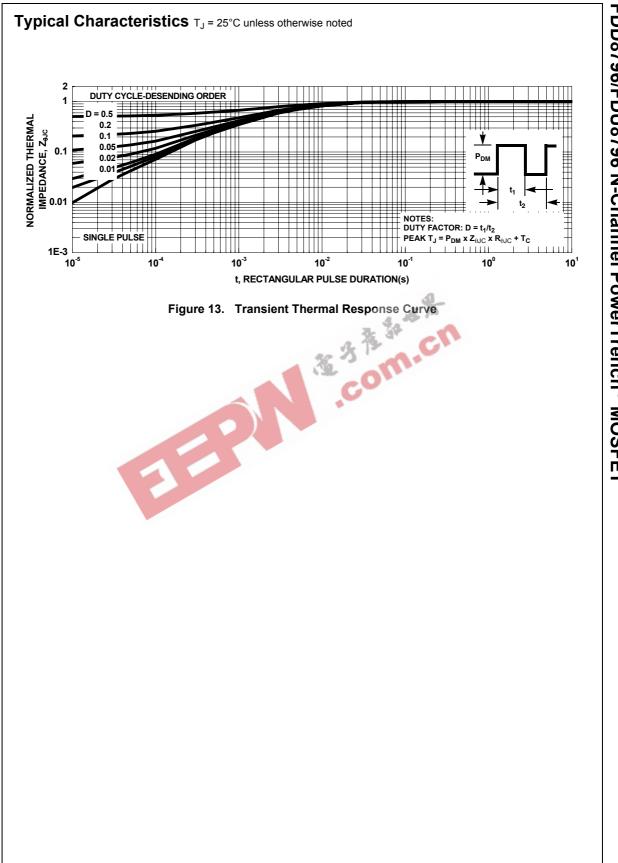

TO-251AA

75 units

75 units


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	25			V
ΔB_{VDSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		7		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20V$ $V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			1 250	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$			±100	nA
On Chara	cteristics		1			
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1.2	1.8	2.5	V
$\Delta V_{GS(th)}$ ΔT_J	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		-6.7		mV/°C
		V _{GS} = 10V, I _D = 35A		4.5	5.7	
	Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 35A$ $V_{DS} = 10V, I_D = 35A$ $T_J = 175^{\circ}C$		6.0	8.0	mΩ
r _{DS(on)}	Drain to Source On Resistance			6.9	9.5	
Dynamic	Characteristics		2			
C _{iss}	Input Capacitance		100	1960	2610	pF
C _{oss}	Output Capacitance	V _{DS} = 13V, V _{GS} = 0V, f = 1MHz	2.	455	605	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		315	475	pF
R _G	Gate Resistance			1.1		Ω
Switching	Characteristics	COT	·			
t _{d(on)}	Turn-On Delay Time			10	20	ns
t _r	Rise Time	V _{DD} =13V, I _D = 35A		24	39	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 20\Omega$		99	158	ns
t _f	Fall Time			57	91	ns
Q _g	Total Gate Charge	V _{GS} = 0 to10V		37	52	nC
Q _g	Total Gate Charge	$V_{GS} = 0 \text{ to } 5V$ $V_{DD} = 13V,$ $I_D = 35A,$		19	27	nC
Q _{gs}	Gate to Source Gate Charge	$I_{\rm D} = 35 {\rm A},$ $I_{\rm a} = 1.0 {\rm mA}$		6		nC
Q _{gd}	Gate to Drain Charge	'g		6		nC
Drain-Sou	Irce Diode Characteristics					
V	Source to Drain Diade Voltage	V _{GS} = 0V, I _S = 35A		0.9	1.25	V
V_{SD}	Source to Drain Diode Voltage	V _{GS} = 0V, I _S = 15A		0.8	1.0	V
t _{rr}	Reverse Recovery Time	I _F = 35A, di/dt = 100A/μs		30	45	ns
Q _{rr}	Reverse Recovery Charge	I _F = 35A, di/dt = 100A/μs		23	35	nC

2: Starting $T_J = 25^{\circ}$ C, L = 0.3mH, $I_{AS} = 24.7$ A, $V_{DD} = 23$ V, $V_{GS} = 10$ V.



FDD8796/FDU8796 N-Channel PowerTrench[®] MOSFET

FDD8796/FDU8796 Rev. B

FDD8796/FDU8796 Rev. B

The following are register	ed and unregistered trader			
5 5	tive list of all such tradema		uctor owns or is authorized	to use and is not
ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic®
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	<i>i-Lo</i> ™	OCX™	µSerDes™	UltraFET®
EnSigna™	ImpliedDisconnect [™]	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
FACT Quiet Series™		OPTOPLANAR™	SMART START™	Wire™
		PACMAN™	SPM™	
Across the board. Around the world.™		POP™	Stealth™	
The Power Franchise [®]		Power247™	SuperFET™	
Programmable Active	Droop™	PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

FDD8796/FDU8796 N-Channel PowerTrench[®] MOSFET