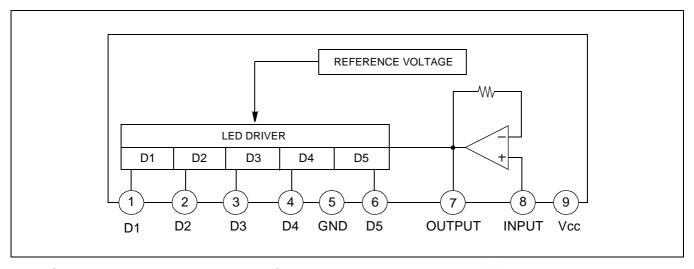

INTRODUCTION

The S1A2284A01 and S1A2284A02 are monolithic integrated circuits designed for 5-dot LED level meter drivers with a builtin rectifying amplifier. It is suitable for AC/DC level meters such as VU meters or signal meters.

FEATURES

- High gain rectifying amplifier included ($G_V = 26dB$)
- Low radiation noise when LED turns on
- Logarithmic indicator for 5-dot bar type LED (-10, -5, 0, 3, 6dB)
- Constant current output S1A2284A01: lo = 15mA (Typ) S1A2284A02: Io = 7mA (Typ)
- Wide operating supply voltage range: $V_{CC} = 3.5V - 1.6V$
- Minimum number of external parts required



ORDERING IN FORMATION

	de operating supply $_{C} = 3.5V - 1.6V$	voltage range:		А			
• Mir	nimum number of ex	ternal parts require	d	1 15 15			
ORDE	ORDERING IN FORMATION						
	Device	Package	Operating Temperatu	ire I _D			
S1.	A2284A01-I0U0	9-SIP	– 20°C – + 80°C	15mA			
S1.	A2284A02-I0U0			7mA			

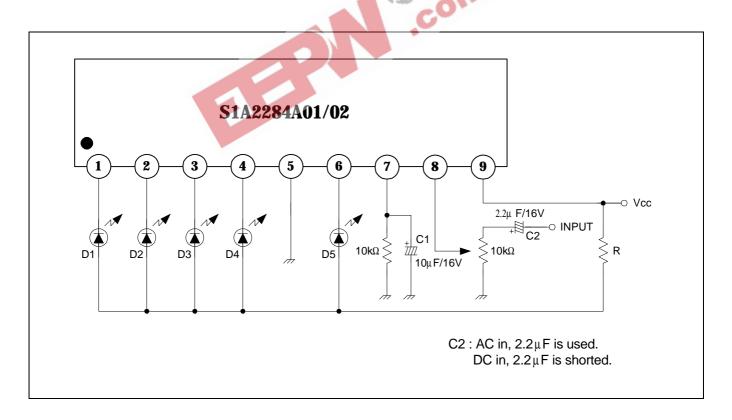
BLOCK DIAGRAM

NOTE: Capacitor to be omitted when used as a DC input signal meter

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

NOTE: Capacitor to be omitted when used as a DC input signal meter					
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C) Characteristic Symbol Value Unit					
Characteristic	Symbol	Value	Unit		
Supply Voltage	V _{CC}	18	V		
Amp Input Voltage	V ₈₋₅	-0.5 - V _{CC}	V		
Pin 7 Voltage	V ₇₋₅	6	V		
D Terminal Output Voltage	V _D	18	V		
Circuit Current	I _{CC}	12	mA		
D Terminal Output Current	I _D	20	mA		
Power Dissipation	P _d	1100	mW		
Operating Temperature	T _{OPR}	-20 - + 80	°C		
Storage Temperature	T _{STG}	-40 - + 125	°C		

NOTE: $11 \text{mW/}^{\circ}\text{C}$ is decreased at higher temperature than $T_a = 25^{\circ}\text{C}$.


ELECTRICAL CHARACTERISTICS

 $(T_a = 25^{\circ}C, V_{CC} = 6V, f = 1kHz, unless otherwise specified)$

Charact	eristic		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Circuit Current			I _{CCQ}	$V_i = 0V$	_	6	8.5	mA
D Output Current	S1A2284	A01	I _O	V _i = 0.15V	11	15	18.5	mA
	S1A2284/	A02			5	7	9.5	
Input Bias Current			I _{BIAS}	_	-1	_	0	μΑ
Amp Gain			G _V	V _I = 0.1 V	24	26	28	dB
Comparator ON Level V _{CL (ON)}		V _{CL(ON)1}		-12	-10	-8		
			V _{CL(ON)2}		-6	-5	-4	
		L (ON)	V _{CL(ON)3}	_	_	0	_	dB
			V _{CL(ON)4}		2.5	3	3.5	
			V _{CL(ON)5}		5	6	7	

NOTE: Definition of 0dB: input voltage level when $V_{CL\ (ON)3}$ turn ON (50mV)

TEST CIRCUIT

The recommended value of R at T_a (max) = 60° C.

V _{CC} (V)	8 – 12	10 –14	12 – 16
$R(\Omega)$	47	68	91

By changing the time constant C_1 and C_2 , the response, attack and release time may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.

