

# 24-bit, 96kHz 6-Channel DAC with Volume Control

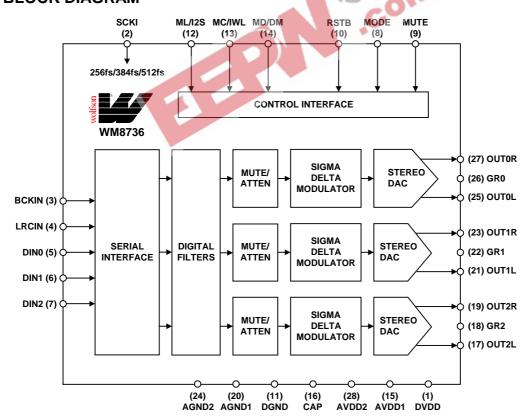
Production Data, January 2001, Rev 2.1

# **DESCRIPTION**

The WM8736 is a high performance 6-channel DAC designed for audio applications such as DVD, home theatre systems, and digital TV. The WM8736 supports data input word lengths from 16 to 24-bits and sampling rates up to 96kHz. The WM8736 consists of a serial interface port, digital interpolation filters, multi-bit sigma delta modulators and 6 DACs in a small 28-pin SSOP package. The WM8736 also includes a digitally controllable mute and attenuator function on each channel.

The WM8736 supports a variety of connection schemes for audio DAC control. The SPI-compatible serial port provides access to a wide range of features including on-chip mute, attenuation and phase reversal. A hardware controllable interface is also available.

The WM8736 is an ideal device to interface to AC-3<sup>TM</sup>, DTS<sup>TM</sup>, and MPEG audio decoders for surround sound applications.


## **FEATURES**

- 6-channel DAC
- Performance:
  - 102dB SNR ('A' weighted @ 48kHz), THD+N: -95dB at full scale
- 5V or 3.3V supply operation
- Sampling frequency: 8kHz to 96kHz
- Input data word: 16 to 24-bit
- Hardware or SPI compatible serial port control modes:
  - Hardware mode: system clock, reset, mute
  - Serial control mode: mute, de-emphasis, digital attenuation (256 steps), zero mute, power down

# **APPLICATIONS**

- DVD
- Home theatre systems
- Digital TV
- Digital broadcast receivers

# **BLOCK DIAGRAM**



#### **WOLFSON MICROELECTRONICS LTD**

Lutton Court, Bernard Terrace, Edinburgh, EH8 9NX, UK

Tel: +44 (0) 131 667 9386 Fax: +44 (0) 131 667 5176 Email: sales@wolfson.co.uk www.wolfsonmicro.com

# **PIN CONFIGURATION**

|        |     |    | - |       |
|--------|-----|----|---|-------|
| DVDD   | 1 • | 28 |   | AVDD2 |
| SCKI   | 2   | 27 |   | OUT0R |
| BCKIN  | 3   | 26 |   | GR0   |
| LRCIN  | 4   | 25 |   | OUT0L |
| DIN0   | 5   | 24 |   | AGND2 |
| DIN1   | 6   | 23 |   | OUT1R |
| DIN2   | 7   | 22 |   | GR1   |
| MODE   | 8   | 21 |   | OUT1L |
| MUTE   | 9   | 20 |   | AGND1 |
| RSTB   | 10  | 19 |   | OUT2R |
| DGND   | 11  | 18 |   | GR2   |
| ML/I2S | 12  | 17 |   | OUT2L |
| MC/IWL | 13  | 16 |   | CAP   |
| MD/DM  | 14  | 15 |   | AVDD1 |
|        |     |    | ] |       |

# **ORDERING INFORMATION**

| DEVICE    | TEMP. RANGE  | PACKAGE     |
|-----------|--------------|-------------|
| WM8736EDS | -25° to 85°C | 28-pin SSOP |

# **ABSOLUTE MAXIMUM RATINGS**

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.



ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

| CONDITION                                        | MIN    | MAX        |
|--------------------------------------------------|--------|------------|
| Supply voltage                                   | -0.3V  | +7V        |
| Reference input                                  |        | VDD + 0.3V |
| Operating temperature range, T <sub>A</sub>      | -25° C | +85°C      |
| Storage temperature                              | -65° C | +150°C     |
| Package body temperature (soldering, 10 seconds) |        | +240°C     |
| Package body temperature (soldering, 2 minutes)  |        | +183°C     |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER               | SYMBOL      | TEST CONDITIONS | MIN  | TYP      | MAX  | UNIT |
|-------------------------|-------------|-----------------|------|----------|------|------|
| Digital supply range    | DVDD        |                 | -10% | 3.3 to 5 | +10% | V    |
| Analogue supply range   | AVDD        |                 | -10% | 3.3 to 5 | +10% | V    |
| Ground                  | AGND, DGND  |                 |      | 0        |      | V    |
| Difference DGND to AGND |             |                 | -0.3 | 0        | +0.3 | V    |
| Analogue supply current | AVDD = 5V   |                 |      | 50       |      | mA   |
| Digital supply current  | DVDD = 5V   |                 |      | 15       |      | mA   |
| Analogue supply current | AVDD = 3.3V |                 |      | 45       |      | mA   |
| Digital supply current  | DVDD = 3.3V |                 |      | 15       |      | mA   |

# **ELECTRICAL CHARACTERISTICS**

# **Test Conditions**

AVDD, DVDD = 5V, AGND, DGND = 0V,  $T_A = +25^{\circ}C$ , fs = 48kHz, SCKI = 256fs unless otherwise stated.

| PARAMETER                             | SYMBOL          | TEST CONDITIONS                               | MIN         | TYP    | MAX        | UNIT             |
|---------------------------------------|-----------------|-----------------------------------------------|-------------|--------|------------|------------------|
| <b>DAC Circuit Specifications</b>     |                 |                                               |             |        |            |                  |
| SNR (See Notes 1 and 2)               |                 | AVDD, DVDD = 5V                               | 95          | 102    |            | dB               |
|                                       |                 | AVDD, DVDD = 3.3V                             |             | 100    |            | dB               |
| SNR with automute on                  |                 | AVDD, DVDD = 5V                               | -           | 110    |            | dB               |
|                                       |                 | AVDD, DVDD = 3.3V                             | 39          | 108    |            | dB               |
| THD (full-scale)<br>(See Note 2)      |                 | 0dB                                           | 7 30 T      | -96    | -85        | dB               |
| THD+N (Dynamic range)<br>(See Note 2) |                 | -60dB                                         | -wi         | 102    |            | dB               |
| Frequency response                    |                 |                                               | 0           |        | 20,000     | Hz               |
| Pass band ripple                      |                 |                                               |             | 0.125  |            | dB               |
| Transition band                       |                 |                                               | 20,000      |        |            | Hz               |
| Out of band rejection                 |                 |                                               |             | -40    |            | dB               |
| Channel separation                    |                 |                                               |             | 90     |            | dB               |
| Gain mismatch channel-to-channel      | 1               |                                               |             | ±1     |            | %FSR             |
| Digital Logic Levels                  |                 |                                               | 1           |        | 1          |                  |
| Input LOW level                       | V <sub>1L</sub> |                                               |             |        | 0.8        | V                |
| Input HIGH level                      | V <sub>IH</sub> |                                               | 2.0         |        |            | V                |
| Output LOW level                      | V <sub>OL</sub> | I <sub>OL</sub> = 2mA                         |             |        | GND + 0.3V |                  |
| Output HIGH level                     | Voн             | I <sub>OH</sub> = 2mA                         | DVDD - 0.3V |        |            |                  |
| Analogue Output Levels                |                 |                                               |             |        | 1          |                  |
| Output level                          |                 | Into 10kohm, full scale 0dB,<br>(5V supply)   |             | 1.1    |            | $V_{RMS}$        |
|                                       |                 | Into 10kohm, full scale 0dB,<br>(3.3V supply) |             | 0.72   |            | V <sub>RMS</sub> |
| Minimum resistance load               |                 | To midrail or a.c. coupled (5V supply)        |             | 1      |            | kohms            |
|                                       |                 | To midrail or a.c. coupled (3.3V supply)      |             | 1      |            | kohms            |
| Maximum capacitance load              |                 | 5V or 3.3V                                    |             | 100    |            | pF               |
| Output d.c. level                     |                 |                                               |             | AVDD/2 |            | V                |
| Reference Levels                      | l .             | 1                                             |             | l .    | 1          |                  |
| Potential divider resistance          |                 | AVDD to CAP and CAP to AGND                   |             | 90     |            | kohms            |
| Voltage at CAP                        |                 | OAI TO AGIND                                  |             | AVDD/2 |            |                  |
| POR                                   | 1               |                                               |             | ,      |            |                  |
| POR threshold                         |                 |                                               |             | 1.8    |            | V                |

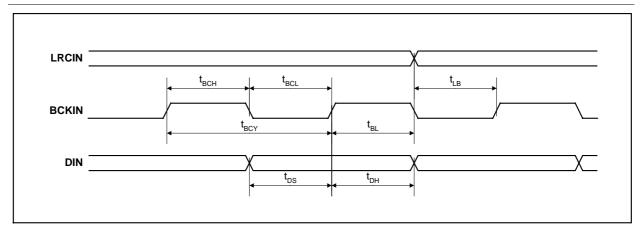



Figure 1 Audio Data Input Timing

# **Test Conditions**

AVDD, DVDD = 5V, AGND, DGND = 0V,  $T_A = +25^{\circ}C$ , fs = 48kHz, SCKI = 256fs unless otherwise stated.

| PARAMETER                              | SYMBOL           | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|----------------------------------------|------------------|-----------------|-----|-----|-----|------|
| Audio Data Input Timing I              | nformation       |                 |     |     |     |      |
| BCKIN pulse cycle time                 | t <sub>BCY</sub> |                 | 100 |     |     | ns   |
| BCKIN pulse width high                 | t <sub>BCH</sub> |                 | 50  | 5   |     | ns   |
| BCKIN pulse width low                  | t <sub>BCL</sub> |                 | 50  |     |     | ns   |
| BCKIN rising edge<br>to LRCIN edge     | t <sub>BL</sub>  | e 2             | 30  | 11. |     | ns   |
| LRCIN rising edge to BCKIN rising edge | t <sub>LB</sub>  | 132             | 30  |     |     | ns   |
| DIN setup time                         | t <sub>DS</sub>  |                 | 30  |     |     | ns   |
| DIN hold time                          | t <sub>DH</sub>  |                 | 30  |     |     | ns   |

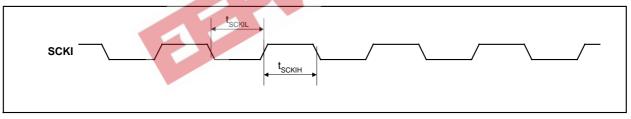



Figure 2 System Clock Timing Requirements

## **Test Conditions**

AVDD, DVDD = 5V, AGND, DGND = 0V,  $T_A = +25^{\circ}C$ , fs = 48kHz, SCKI = 256fs unless otherwise stated.

| PARAMETER                          | SYMBOL             | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|------------------------------------|--------------------|-----------------|-----|-----|-----|------|
| System Clock Timing Information    |                    |                 |     |     |     |      |
| SCKI system clock pulse width high | t <sub>SCKIH</sub> |                 | 13  |     |     | ns   |
| SCKI system clock pulse width low  | t <sub>SCKIL</sub> |                 | 13  |     |     | ns   |

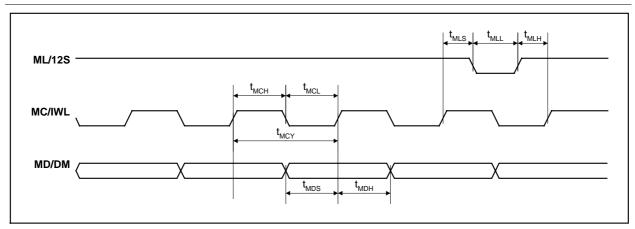



Figure 3 Program Register Input Timing

## **Test Conditions**

AVDD, DVDD = 5V, AGND, DGND = 0V,  $T_A = +25^{\circ}C$ , fs = 48kHz, SCKI = 256fs unless otherwise stated.

| PARAMETER                    | SYMBOL           | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|------------------------------|------------------|-----------------|-----|-----|-----|------|
| Program Register Input Infor | mation           |                 |     |     |     |      |
| MC/IWL pulse cycle time      | t <sub>MCY</sub> |                 | 100 |     |     | ns   |
| MC/IWL pulse width low       | t <sub>MCL</sub> |                 | 50  | -   |     | ns   |
| MD/DM pulse width high       | t <sub>MCH</sub> |                 | 50  |     |     | ns   |
| MD/DM set-up time            | t <sub>MDS</sub> | - 3             | 30  | 0   |     | ns   |
| MC/IWL hold time             | t <sub>MDH</sub> | %T              | 30  |     |     | ns   |
| ML/I2S pulse width low       | t <sub>MLL</sub> |                 | 30  |     |     | ns   |
| ML/I2S set-up time           | t <sub>MLS</sub> |                 | 30  |     |     | ns   |
| ML/I2S hold time             | t <sub>MLH</sub> |                 | 30  |     |     | ns   |

## Notes:

- 1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured "A" weighted over a 20Hz to 20kHz bandwidth.
- 2. All performance measurements done with 20kHz low pass filter. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.

# **PIN DESCRIPTION**

| PIN | NAME   | TYPE            | DESCRIPTION                                                                                                       |
|-----|--------|-----------------|-------------------------------------------------------------------------------------------------------------------|
| 1   | DVDD   | Supply          | Digital positive supply.                                                                                          |
| 2   | SCKI   | Digital input   | System clock input (256, 384 or 512fs).                                                                           |
| 3   | BCKIN  | Digital input   | Audio data bit clock input.                                                                                       |
| 4   | LRCIN  | Digital input   | Left sample rate clock input.                                                                                     |
| 5   | DIN0   | Digital input   | Channel 0 serial audio data input.                                                                                |
| 6   | DIN1   | Digital input   | Channel 1 serial audio data input.                                                                                |
| 7   | DIN2   | Digital input   | Channel 2 serial audio data input.                                                                                |
| 8   | MODE   | Digital input   | Mode select pin. Low is software mode, high is hardware control. Internal pull-down.                              |
| 9   | MUTE   | Digital I/O     | Mute control pin, input or automute output.  Low is not mute, high is mute, Z is automute.                        |
| 10  | RSTB   | Digital input   | Reset input – active low. Internal pull-up.                                                                       |
| 11  | DGND   | Supply          | Digital ground supply                                                                                             |
| 12  | ML/I2S | Digital input   | Latch enable (software mode) or input format selection (hardware mode). Internal pull-up.                         |
| 13  | MC/IWL | Digital input   | Serial control data clock input (software mode) or input word length selection (hardware mode). Internal pull-up. |
| 14  | MD/DM  | Digital input   | Serial control data input (software mode) or de-emphasis selection (hardware mode).                               |
| 15  | AVDD1  | Supply          | Analogue positive supply.                                                                                         |
| 16  | CAP    | Analogue output | Analogue internal reference.                                                                                      |
| 17  | OUT2L  | Analogue output | Left channel 2 output.                                                                                            |
| 18  | GR2    | Analogue input  | Channel 2 reference.                                                                                              |
| 19  | OUT2R  | Analogue output | Right channel 2 output.                                                                                           |
| 20  | AGND1  | Supply          | Analogue ground supply.                                                                                           |
| 21  | OUT1L  | Analogue output | Left channel 1 output.                                                                                            |
| 22  | GR1    | Analogue input  | Channel 1 reference.                                                                                              |
| 23  | OUT1R  | Analogue output | Right channel 1 output.                                                                                           |
| 24  | AGND2  | Supply          | Analogue ground supply.                                                                                           |
| 25  | OUT0L  | Analogue output | Left channel 0 output.                                                                                            |
| 26  | GR0    | Analogue input  | Channel 0 reference.                                                                                              |
| 27  | OUT0R  | Analogue output | Right channel 0 output.                                                                                           |
| 28  | AVDD2  | Supply          | Analogue positive supply.                                                                                         |

## Note:

Digital input pins have Schmitt trigger input buffers.

## **DEVICE DESCRIPTION**

WM8736 is a complete 6-channel stereo audio digital-to-analogue converter, including digital interpolation filter, multi-bit sigma delta with dither, and switched capacitor multi-bit stereo DAC and output smoothing filters.

The device is implemented as three separate stereo DACs in a single package and controlled by a single interface. Three separate data input pins are provided for each of the three separate stereo DACs, and LRCIN, BCKIN and SCKI are shared between them.

Control of internal functionality of the device is by either hardware control (pin programmed) or software control (serial interface). The MODE pin selects between hardware and software control. In software control mode, an SPI type interface is used. This interface may be asynchronous to the audio data interface. Control data will be re-synchronized to the audio processing internally.

Operation using system clock of 256fs, 384fs or 512fs is provided, selection between clock rates being automatically controlled in hardware mode, or serial controlled when in software mode. Sample rates (fs) from less than 8ks/s to 96ks/s are allowed, provided the appropriate system clock is input.

The data interface supports normal (Japanese right justified) and I<sup>2</sup>S (Philips left justified, one bit delayed) interface formats, in both 'packed' and unpacked forms. When in hardware mode, the three serial interface pins become control pins to allow selection of input data format type (I<sup>2</sup>S or normal), input word length (16, 18, 20, or 24-bit) and de-emphasis function.

#### SYSTEM CLOCK

The system clock for WM8736 must be either 256fs, 384fs or 512fs, where fs is the audio sampling frequency (LRCIN) typically 32kHz, 44.1kHz, 48 or 96kHz. The system clock is used to operate the digital filters and the noise shaping circuits.

WM8736 has a system clock detection circuit that automatically determines what the system clock frequency relative to the sampling rate is (to within +/- 8 system clocks). If greater than 8 clocks error, then the interface shuts down the DAC and mutes the output. The system clock should be synchronised with LRCIN, but WM8736 is tolerant of phase differences or jitter on this clock. Severe distortion in the phase difference between LRCIN and the system clock will be detected, and cause the device to automatically resynchronise. If the externally applied LRCIN slips in phase by more than half the internal LRCIN period, which is derived from master clock, then the interface resynchronises. Such a case would, for example, occur if repeated LRCIN clocks were received with only 252 systems clocks per period. In this case the interface would only resynchronise once every 64 LRCIN periods, even if jitter was present on the LRCIN signal. During resynchronisation, the device will either repeat the previous sample, or drop the next sample, depending on the nature of the phase slip. This will ensure no discernible "click" at the analogue outputs during resynchronisation. Table 1 shows the typical system clock frequency inputs for the WM8736.

| SAMPLING RATE | SYSTEM CLOCK FREQUENCY (MHZ) |         |         |  |  |
|---------------|------------------------------|---------|---------|--|--|
| (LRCIN)       | 256fs                        | 384fs   | 512fs   |  |  |
| 32kHz         | 8.192                        | 12.288  | 16.384  |  |  |
| 44.1kHz       | 11.2896                      | 16.9340 | 22.5792 |  |  |
| 48kHz         | 12.288                       | 18.432  | 24.576  |  |  |
| 96kHz         | 24.576                       | 36.864  |         |  |  |

Table 1 System Clock Frequencies Versus Sampling Rate

## **AUDIO DATA INTERFACE**

The Serial Data interface to WM8736 is fully compatible with both normal (MSB first, right-justified) or  $l^2S$  interfaces. Data may be 'packed' (number of serial bit clocks per LRCIN period is exactly 2 times the number of data bits, i.e. normally 32 in 16-bit mode) or unpacked (more than 32 bit clocks per LRCIN period).

The WM8736 will automatically detect 16-bit packed data being sent to the device in normal mode, and accept the data in this input format accordingly.

| I <sup>2</sup> S MODE | DESCRIPTION                                            |
|-----------------------|--------------------------------------------------------|
| 0                     | Normal format (MSB-first, right Justified)             |
| 1                     | I <sup>2</sup> S format (Philips serial data protocol) |

**Table 2 Serial Interface Formats** 

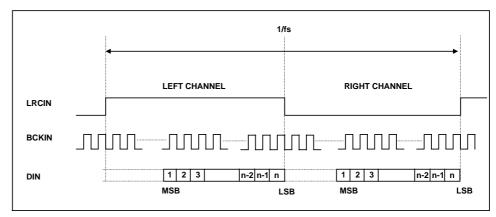



Figure 4 'Normal' Data Input Timing

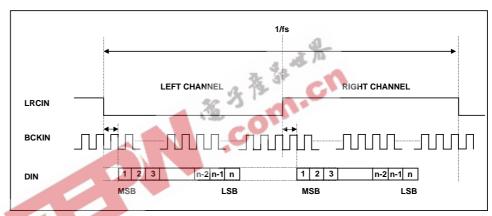



Figure 5 I<sup>2</sup>S Data Input Timing

# **MODES OF OPERATION**

Control of the various modes of operation is either by software control over the serial interface, or by hard-wired pin control. Selection of software or hardware mode is via MODE pin. The following functions may be controlled either via the serial control interface or by hard wiring of the appropriate pins.

| FUNCTION                | I                       | SOFTWARE CONTROL DEFAULT VALUE         | HARDWARE CONTROL<br>BEHAVIOUR                   |
|-------------------------|-------------------------|----------------------------------------|-------------------------------------------------|
|                         | OPTIONS                 | PIN 8: MODE = 0                        | PIN 8: MODE = 1                                 |
| Input audio data format | Normal format           | $I^2S = 0$ (default)                   | Pin 12, 13: ML/I2S, MC/IWL = 00 or 01 or 10     |
|                         | I <sup>2</sup> S format | $I^2S = 1$                             | Pin 12, 13: ML/I2S, MC/IWL = 11                 |
| Input word length       | 16                      | IW[1:0] = 00 (default)                 | Pin 12, 13: ML/I2S, MC/IWL = 00                 |
|                         | 18                      | IW[1:0] = 11                           | Pin 12, 13: ML/I2S, MC/IWL = 11 ( $I^2$ S only) |
|                         | 20                      | IW[1:0] = 01                           | Pin 12, 13: ML/I2S, MC/IWL = 01                 |
|                         | 24                      | IW[1:0] = 10                           | Pin 12, 13: ML/I2S, MC/IWL = 10                 |
| De-emphasis selection   | On                      | DE = 1                                 | Pin 14: MD/DM = 1                               |
|                         | Off                     | DE = 0 (Default)                       | Pin 14: MD/DM = 0                               |
| Mute                    | On                      | MU = 1                                 | Pin 9: MUTE = 1                                 |
|                         | Off                     | MU = 0 (default)                       | Pin 9: MUTE = 0                                 |
| Reset and power down    | WM8736 off              | Available from Pin 10: RSTB            | Pin 10: RSTB = 0                                |
| control                 | WM8736 on               |                                        | Pin 10: RSTB = 1                                |
| Input LRCIN polarity    | Lch/Rch =               | LRP = 0 (default)                      | Not available in hardware mode,                 |
|                         | High/Low                | 2.12                                   | default value set                               |
|                         | Lch/Rch =<br>Low/High   | LRP = 1                                | N.                                              |
| Volume control          | Lch, Rch individually   | ATC = 0; 0dB (default)                 | Not available in hardware mode,<br>default 0dB  |
|                         | Lch, Rch<br>common      | ATC = 1                                |                                                 |
| Infinite zero detect    | On                      | <b>IZ</b> D = 1                        | Automute function controlled                    |
|                         | Off                     | IZD = 0 (default)                      | from MUTE pin                                   |
| Operation enable (OPE)  | Enabled                 | OPE = 0 (default)                      | low = not mute Z = automute enable              |
| . ,                     | Disabled                | OPE = 1                                | high = muted                                    |
| DAC output control      | See Table 7             | Default is PL[3:0] = 1001, stereo mode | Not available in hardware mode                  |
|                         | for all options         |                                        |                                                 |

**Table 3 Control Function Summary** 

## HARDWARE CONTROL MODES

When the MODE pin is held high the following hardware modes of operation are available.

## **MUTE AND AUTOMUTE OPERATION**

In both hardware and software modes pin 9 (MUTE) controls selection of MUTE directly, and can be used to enable and disable the automute function, or as an output of the automuted signal.

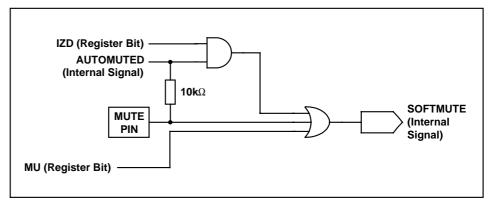



Figure 6 Mute Circuit Operation

The MUTE pin behaves as a bi-directional function, that is, as an input to select MUTE or NOT-MUTE, or as an output indication of automute operation. MUTE is active high; taking the pin high causes the filters to soft mute, ramping down the audio signal over a few milliseconds. Taking MUTE low again allows data into the filter.

The automute function detects a series of zero value audio samples of 1024 samples long being applied to both left and right channels. After such an event, a latch is set whose output (AUTOMUTED) is wire OR'ed through a 10kohm resistor to the MUTE pin. Thus if the MUTE pin is not being driven, the automute function will assert MUTE.

If MUTE is tied low, AUTOMUTED is overidden and will not mute. If MUTE is driven from a source follower, or diode, then both MUTE and automute functions are available. If MUTE is not driven, AUTOMUTED appears as a weak output (10k source impedance) so can be used to drive external mute circuits.

The automute signal is AND'ed with IZD, this qualified mute signal then being OR'ed into the SOFTMUTE control. Therefore, in software mode, automute operation may be controlled with IZD control bit.

## I<sup>2</sup>S INPUT FORMAT SELECTION AND MC/IWL INPUT FORMAT SELECTION

In hardware mode, pins 12 and 13 become input controls for selection of input data format type and input data word length, see Table 4. I<sup>2</sup>S mode is designed to support any word length provided enough bit clocks are sent.

| l <sup>2</sup> S | MC/IWL | INPUT DATA MODE       |
|------------------|--------|-----------------------|
| 0                | 0      | 16-bit normal         |
| 0                | 1      | 20-bit normal         |
| 1                | 0      | 24-bit normal         |
| 1                | 1      | I <sup>2</sup> S mode |

Table 4 Control of Input Data Format Type and Input Data Word Length

## MD/DM DE-EMPHASIS

In hardware mode, pin 14 becomes an input control for selection of de-emphasis filtering to be applied. see Table 5.

| MD/DM | 0 | De-emphasis off |
|-------|---|-----------------|
| MD/DM | 1 | De-emphasis on  |

Table 5 De-emphasis Control

## **RSTB RESET AND POWER DOWN CONTROL**

In both hardware and software modes, this pin resets the entire device when taken low. The device remains powered down while RSTB is held low.

| RSTB | 0 | Device powered down and reset |
|------|---|-------------------------------|
| RSTB | 1 | Device powered up and active  |

Table 6 Reset and Power Down Control

# SOFTWARE CONTROL INTERFACE

The WM8736 can be controlled using a 3-wire serial interface. MD/DM (pin 6) is used for the program data, MC/IWL (pin 5) is used to clock in the program data and ML/I2S (pin 4) is use to latch in the program data. The 3-wire interface protocol is shown in Figure 7.



Figure 7 3-Wire Serial Interface

#### **REGISTER MAP**

WM8736 controls the special functions using 9 program registers, which are 16-bits long. These registers are all loaded through input pin MD/DM. After the 16 data bits are clocked in, ML/I2S is used to latch in the data to the appropriate register. Table 7 shows the complete mapping of the 9 registers.

|    | B2 | B1     | В0 | A3 | A2   | A1   | A0 | D8  | D7  | D6  | D5  | D4   | D3  | D2  | D1  | D0               |
|----|----|--------|----|----|------|------|----|-----|-----|-----|-----|------|-----|-----|-----|------------------|
|    | N  | OT USE | D  |    | ADDF | RESS |    |     |     |     |     | DATA |     |     |     |                  |
| MO | -  | -      | -  | 0  | 0    | 0    | 0  | LDL | AL7 | AL6 | AL5 | AL4  | AL3 | AL2 | AL1 | AL0              |
| M1 | -  | -      | -  | 0  | 0    | 0    | 1  | LDR | AR7 | AR6 | AR5 | AR4  | AR3 | AR2 | AR1 | AR0              |
| M2 | -  | -      | -  | 0  | 0    | 1    | 0  | PL3 | PL2 | PL1 | PL0 | IW1  | IW0 | OPE | DE  | MU               |
| М3 | -  | -      | -  | 0  | 0    | 1    | 1  | IZD | -   | -   | -   | -    | -   | ATC | LRP | I <sup>2</sup> S |
| M4 | -  | -      | -  | 0  | 1    | 0    | 0  | LDL | AL7 | AL6 | AL5 | AL4  | AL3 | AL2 | AL1 | AL0              |
| M5 | -  | -      | -  | 0  | 1    | 0    | 1  | LDR | AR7 | AR6 | AR5 | AR4  | AR3 | AR2 | AR1 | AR0              |
| М6 | -  | -      | -  | 0  | 1    | 1    | 0  | LDL | AL7 | AL6 | AL5 | AL4  | AL3 | AL2 | AL1 | AL0              |
| М7 | -  | -      | -  | 0  | 1    | 1    | 1  | LDR | AR7 | AR6 | AR5 | AR4  | AR3 | AR2 | AR1 | AR0              |
| M8 | -  | -      | -  | 1  | 0    | 0    | 0  | LDM | AM7 | AM6 | AM5 | AM4  | AM3 | AM2 | AM1 | AM0              |

Table 7 Mapping of Program Registers

| REGISTER NAME | BIT NAME         | DEFAULT   | DESCRIPTION                                                  |  |
|---------------|------------------|-----------|--------------------------------------------------------------|--|
| Register M0   | AL[7:0]          | 1111 1111 | Attenuation data for left channel DAC 0                      |  |
| A[3:0] = 0000 | LDL              | 0         | Attenuation data load control for left channel DAC 0         |  |
| Register M1   | AR[7:0]          | 1111 1111 | Attenuation data for right channel DAC 0                     |  |
| A[3:0] = 0001 | LDR              | 0         | Attenuation data load control for right channel DAC 0        |  |
| Register M2   | MU               | 0         | Left and right DACs soft mute control                        |  |
| A[3:0] = 0010 | DE               | 0         | De-emphasis control                                          |  |
|               | OPE              | 0         | Left and right DACs operation control                        |  |
|               | IW[1:0]          | 00        | Input audio word resolution                                  |  |
|               | PL[3:0]          | 1001      | DAC output control                                           |  |
| Register M3   | l <sup>2</sup> S | 0         | Audio data format select                                     |  |
| A[3:0] = 0011 | LRP              | 0         | Polarity of LRCIN (pin 4) Select                             |  |
|               | ATC              | 0         | Attenuator control                                           |  |
|               | SF[1:0]          | 00        | Sampling rate select                                         |  |
|               | IZD              | 0         | Infinite zero detection circuit control and automute control |  |
| Register M4   | AL[7:0]          | 1111 1111 | Attenuation data for left channel DAC 1                      |  |
| A[3:0] = 0100 | LDL              | 0         | Attenuation data load control for left channel DAC 1         |  |
| Register M5   | AR[7:0]          | 1111 1111 | Attenuation data for right channel DAC 1                     |  |
| A[3:0] = 0101 | LDR              | 0         | Attenuation data load control for right channel DAC 1        |  |
| Register M6   | AL[7:0]          | 1111 1111 | Attenuation data for left channel DAC 2                      |  |
| A[3:0] = 0110 | LDL              | 0         | Attenuation data load control for left channel DAC 2         |  |
| Register M7   | AR[7:0]          | 1111 1111 | Attenuation data for right channel DAC 2                     |  |
| A[3:0] = 0111 | LDR              | 0         | Attenuation data load control for right channel DAC 2        |  |
| Register M8   | AM[7:0]          | 1111 1111 | DAC attenuation data for all channels                        |  |
| Master Gain   | LDM              | 0         | Attenuation data load control for all channels               |  |
| A[3:0] = 1000 |                  |           | 4 19                                                         |  |

**Table 8 Internal Register Mapping** 

#### DAC OUTPUT ATTENUATION

Registers M0 and M1 control the left and right channel attenuation of DAC 0. Registers M4 and M5 control the left and right channel attenuation of DAC 1. Registers M6 and M7 control the left and right channel attenuation of DAC 2. Register M8 is a master register that can be used to control attenuation of all channels.

Register M0 (A[3:0] = 0000) is used to control left channel 0 attenuation. Bits 0-7 (AL[7:0]) are used to determine the attenuation level (Table 9). The level of attenuation is given by:

Attenuation = [20.log10 (Attenuation\_Data/256)] dB

Eqn. 1

| AX[7:0] | ATTENUATION LEVEL |
|---------|-------------------|
| 00(hex) | -∞dB (mute)       |
| 01(hex) | -48.16dB          |
| :       | :                 |
| :       | :                 |
| :       | :                 |
| FE(hex) | -0.07dB           |
| FF(hex) | 0dB               |

**Table 9 Attenuation Control Levels** 

Bit 8 in register M0 (LDL) is used to control the loading of attenuation data in AL[7:0]. When LDL is set to 0, attenuation data will be loaded into AL[7:0], but it will not affect the attenuation level until LDL is set to 1.

Register M1 (A[1:0] = 01) is used to control right channel attenuation in the same manner. Attenuation of DAC 1 and 2 are similarly controlled.

Bit 2 in register M3 (A[3:0] = 0011) is used to control the attenuator (ATC). When ATC is high, the attenuation data loaded in the left channel program register is used for both the left and the right channels. Therefore, DAC 0 attenuation data for left and right channels is read from register M0, DAC 1 attenuation data for left and right channels is read from register M4 and DAC 2 attenuation data for left and right channels is read from register M6. When ATC is low, attenuation data is read from the individual left and right DAC registers.

The master gain register M8 (A[3:0] = 0110) is used to write a gain value to all channels simultaneously. Bit 8 (LDM) controls the update in the same way as the attenuation registers, and is to be set to 1 for correct operation in this mode.

#### LEFT AND RIGHT DAC SOFT MUTE CONTROL

Soft mute is controlled by setting bit MU, register M2:bit 0. A high level on MU (MU = 1) will cause the output to be muted, the effect of which is to ramp the signal down in the digital domain so that there is no discernible click. This can be seen in Figure 6 Mute Circuit Operation.

#### **DE-EMPHASIS CONTROL**

Bit 1 (DE) in register M2 is used to control digital de-emphasis. A low level on bit 1 (DE = 0) disables de-emphasis whilst a high level enables de-emphasis (DE = 1). De-emphasis applied to the filters shapes the frequency response of the digital filter according to the input sample frequency.

## **LEFT AND RIGHT DAC OPERATION CONTROL**

Bit 2 (OPE) in register M2 is used for operation control. With OPE = 0 (default) the device functions normally. With OPE = 1 the device is disabled and the outputs are held at midrail. Current consumption of the digital section is minimized, but analogue sections remain active in order to preserve d.c. levels.

#### INPUT AUDIO WORD RESOLUTION

WM8736 allows maximum flexibility over the control of the audio data interface, allowing selection of format type, word length, and sample rates. Bits 3 and 4 of register M2 (IW[1:0]) are used to determine the input word resolution. WM8736 supports 16-bit, 18-bit, 20-bit and 24-bit formats as described in Table 10.

| BIT 4 (IW1) | BIT 3 (IW0) | INPUT RESOLUTION |
|-------------|-------------|------------------|
| 0           | 0           | 16-bit data word |
| 0           | 1 %         | 20-bit data word |
| 1           | 0           | 24-bit data word |
| 1           |             | 18-bit data word |

Table 10 Input Data Resolution

# DAC OUTPUT CONTROL

Bits 5, 6, 7 and 8 (PL[3:0]) of register M2 are used to control the output format as shown in Table 11.

| PL3 | PL2 | PL1 | PL0 | LEFT OUTPUT | RIGHT OUTPUT | NOTE               |
|-----|-----|-----|-----|-------------|--------------|--------------------|
| 0   | 0   | 0   | 0   | MUTE        | MUTE         | Mute both channels |
| 0   | 0   | 0   | 1   | L           | MUTE         |                    |
| 0   | 0   | 1   | 0   | R           | MUTE         |                    |
| 0   | 0   | 1   | 1   | (L + R)/2   | MUTE         |                    |
| 0   | 1   | 0   | 0   | MUTE        | L            |                    |
| 0   | 1   | 0   | 1   | L           | L            |                    |
| 0   | 1   | 1   | 0   | R           | L            | Reverse channels   |
| 0   | 1   | 1   | 1   | (L + R)/2   | L            |                    |
| 1   | 0   | 0   | 0   | MUTE        | R            |                    |
| 1   | 0   | 0   | 1   | L           | R            | Stereo mode        |
| 1   | 0   | 1   | 0   | R           | R            |                    |
| 1   | 0   | 1   | 1   | (L + R)/2   | R            |                    |
| 1   | 1   | 0   | 0   | MUTE        | (L + R)/2    |                    |
| 1   | 1   | 0   | 1   | L           | (L + R)/2    |                    |
| 1   | 1   | 1   | 0   | R           | (L + R)/2    |                    |
| 1   | 1   | 1   | 1   | (L + R)/2   | (L + R)/2    | Mono mode          |

**Table 11 Programmable Output Format** 

#### **SERIAL PROTOCOL**

Bits 0 ( $l^2S$ ) and 1 (LRP) of register M3 are used to control the input data format completely. A low on bit 0 ( $l^2S = 0$ ) sets the format to Normal (MSB-first, right justified Japanese format), whilst a high ( $l^2S = 1$ ) sets the format to  $l^2S$  (Philips serial data protocol).

#### **POLARITY OF LRCIN SELECT**

Bit 1 (LRP) of register M3 is used to control the polarity of LRCIN (sample rate clock). When bit 1 is low (LRP = 0), left channel data is assumed when LRCIN is in a high phase and right channel data is assumed when LRCIN is in a low phase. When bit 1 is high (LRP = 1), the polarity assumption is reversed.

## INTERFACE CLOCKS AND SAMPLING RATES

Bits 6 (SF0) and 7 (SF1) of register M3 are used to control the sampling frequency, as shown in Table 12.

| SF0 | SF1 | SAMPLING FREQUENCY |                        |  |  |
|-----|-----|--------------------|------------------------|--|--|
| 0   | 0   | 44.1kHz group      | 22.05 / 44.1 / 88.2kHz |  |  |
| 0   | 1   | 48kHz group        | 24 / 48 / 96kHz        |  |  |
| 1   | 0   | 32kHz group        | 16 / 32 / 64kHz        |  |  |
| 1   | 1   | Reserved           | Not defined            |  |  |

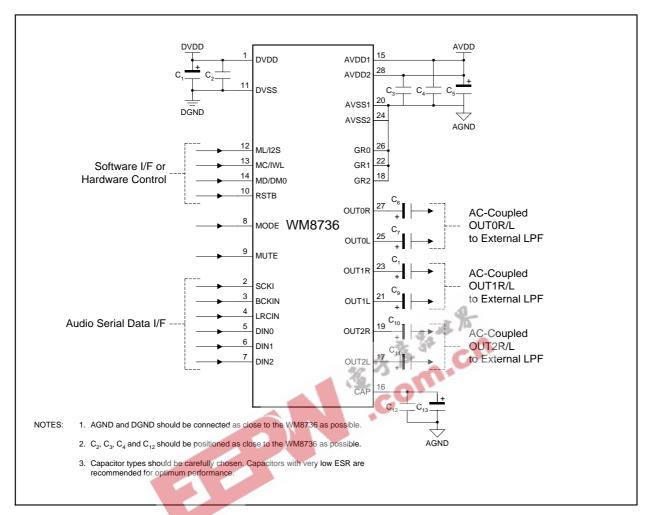
**Table 12 Sampling Frequencies** 

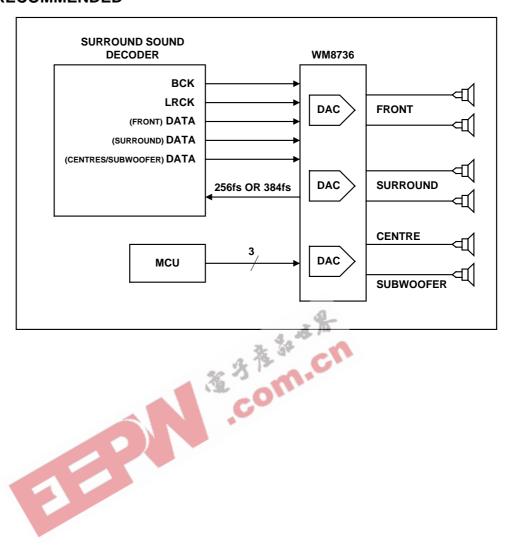
## **INFINITE ZERO DETECTION**

Bit 8 (IZD) in register M3 controls operation of the automute function. If IZD (Infinite Zero Detect) is high, 1024 consecutive zero audio samples will force the ouput to zero. See Figure 6. Note that the control of pin MUTE also affects automute operation. To turn off automute, pin MUTE must be held low as well as IZD being low (default).

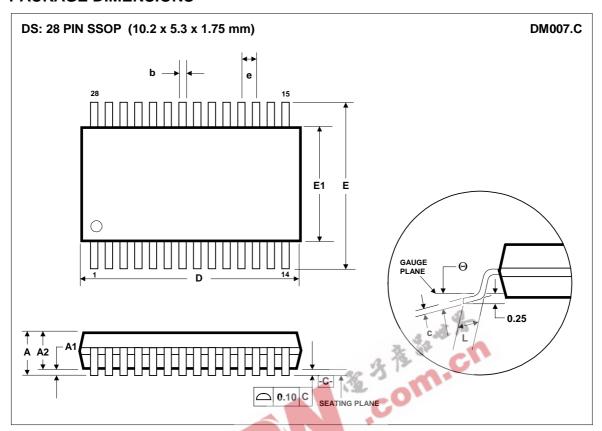


# RECOMMENDED EXTERNAL COMPONENTS





Figure 8 External Components Diagram

# **RECOMMENDED EXTERNAL COMPONENTS VALUES**


| COMPONENT<br>REFERENCE | SUGGESTED<br>VALUE | DESCRIPTION                                                      |
|------------------------|--------------------|------------------------------------------------------------------|
| C1 and C5              | 10μF               | De-coupling for DVDD and AVDD.                                   |
| C2 to C4               | 0.1μF              | De-coupling for DVDD and AVDD.                                   |
| C6 to C11              | 10μF               | Output AC coupling caps to remove midrail DC level from outputs. |
| C12                    | 0.1μF              | Reference de-coupling capacitors for CAP pin.                    |
| C13                    | 10μF               |                                                                  |

**Table 13 External Components Description** 

# **APPLICATIONS RECOMMENDED**



# **PACKAGE DIMENSIONS**



|                       |      | Dimensions   |       |  |  |  |  |
|-----------------------|------|--------------|-------|--|--|--|--|
| Symbols               | (mm) |              |       |  |  |  |  |
|                       | MIN  | NOM          | MAX   |  |  |  |  |
| Α                     |      | <u> </u>     | 2.0   |  |  |  |  |
| <b>A</b> <sub>1</sub> | 0.05 |              |       |  |  |  |  |
| $A_2$                 | 1.62 | 1.75         | 1.85  |  |  |  |  |
| b                     | 0.22 |              | 0.38  |  |  |  |  |
| С                     | 0.09 |              | 0.25  |  |  |  |  |
| D                     | 9.90 | 10.20        | 10.50 |  |  |  |  |
| е                     |      | 0.65 BSC     |       |  |  |  |  |
| E                     | 7.40 | 7.80         | 8.20  |  |  |  |  |
| E <sub>1</sub>        | 5.00 | 5.30         | 5.60  |  |  |  |  |
| L                     | 0.55 | 0.75         | 0.95  |  |  |  |  |
| θ                     | 0°   | 4°           | 8°    |  |  |  |  |
|                       | •    |              |       |  |  |  |  |
| REF:                  | JE   | DEC.95, MO-1 | 150   |  |  |  |  |

- NOTES:
  A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.
  B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.
  C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.
  D. MEETS JEDEC.95 MO-150, VARIATION = AH. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.