To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept.

Customer Support Dept. April 1, 2003

MITSUBISHI 8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 7200 SERIES

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of JAPAN and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

Preface

This manual describes the hardware of the Mitsubishi CMOS 8-bit microcomputers 7220 group.

After reading this manual, the user should have a through knowledge of the functions and features of 7220 group, and should be able to fully utilize the product. The manual starts with specifications and ends with application examples.

For details of software, refer to the "SERIES 740 <SOFTWARE> USER'S MANUAL."

For details of development support tools, refer to the "DEVELOPMENT SUPPORT TOOLS FOR MICROCOMPUTERS" data book.

BEFORE USING THIS MANUAL

This user's manual consists of the following chapters. Refer to the chapter appropriate to your conditions, such as hardware design or software development. <u>The M37221M6-XXXSP/FP is used as a general example in describing the functions of the 7220 group, unless other wise noted.</u>

1. Organization

• CHAPTER 1 HARDWARE

This chapter describes features of the microcomputer, pin configuration, pin description, functional block diagram.

• CHAPTER 2 FUNCTIONAL DESCRIPTION

This chapter describes operation of each peripheral function.

• CHAPTER 3 ELECTRIC CHARACTERISTICS

This chapter describes electric characteristics and standard characteristics.

• CHAPTER 4 M37220M3-XXXSP/FP

This chapter describes differences between the M37220M3-XXXSP/FP and M37221M6-XXXSP/FP.

• CHAPTER 5 APPLICATION

This chapter describes usage and application examples of peripheral functions, based mainly on setting examples of related registers.

• CHAPTER 6 APPENDIX

This chapter includes precautions for systems development using the microcomputer, a list of control registers, the mask ROM confirmation forms (mask ROM version) and mark specification forms which are to be submitted when ordering.

2. Register diagram

The figure of each register structure describes its functions, contents at reset, end attributes as follows:

Table of contents

CHAPTER 1. OVERVIEW	
1 1 Performance overview	1-2
1.2 Pin configuration	1-2
1.3 Pin description	1-7
1.4 Functional block diagram	1-9
CHAPTER 2. FUNCTIONAL DESCRIPTION	
2.4. Control processing unit	• •
2.1 Central processing unit	2-2
2.1.1 Acculturator (A)	<u>2-</u> 2
2.1.2 Index register (Λ) , index register (1)	2-2 2-3
2.1.5 Stack pointer (S)	2-6
2.1.4 Program councer (PS)	2-6
2 2 Access area	2-8
2.2 Access area (addresses 000016 to 00FF16)	2-10
2.2.2 Special page (addresses FE00 ₁₆ to FEE ₁₆)	2-10
2.3 Memory assignment	2-11
2.3.1 Internal RAM	2-16
2.3.2 I/O ports (addresses 00C016 to 00CD16)	2-16
2.3.3 DA registers (addresses 00CE16 and 00CF16)	2-17
2.3.4 PWM registers (addresses 00D016 to 00D416 and 00F616)	2-17
2.3.5 PWM output control registers (addresses 00D516 and 00D616)	2-17
2.3.6 Multi-master I ² C-BUS related registers (addresses 00D716 to 00DB16)	2-17
2.3.7 Serial I/O related registers (addresses 00DC16 and 00DD16)	2-17
2.3.8 CRT display related registers (addresses 00E016 to 00EC16)	2-17
2.3.9 A-D control register (addresses 00EE ₁₆ and 00EF ₁₆)	2-18
2.3.10 Timer registers (addresses 00F016 to 00F316)	2-18
2.3.11 Timer mode registers (address 00F416, 00F516)	2-19
2.3.12 CPU mode register (address 00FB ₁₆)	2-19
2.3.13 Interrupt request registers (addresses 00FC ₁₆ and 00FD ₁₆)	2-19
2.3.14 Interrupt control registers (addresses 00FE ₁₆ and 00FF ₁₆)	2-19
2.3.15 2 page register (addresses 0217 ₁₆ to 021B ₁₆) (only M37221M8/MA-XXXSP)	2-19
2.3.16 CRT display RAM (addresses 060016 to 068716)	2-19
2.3.17 ROM (addresses A00016 to FFF16)	2-19
2.3.18 CRT display ROM (addresses 1000016 to 11FFF16)	2-19
2.4 Input/Output pins	2-20
2.4.1 Programmable ports	2-20
2.4.2 Dedicated pins	2-23 2-26
2.5 Interrupt sources	2-20
2.5.1 Interrupt sources	<u>2-</u> 21 2_20
2.6.2 millionapi control	2-29 2-31
2.6.1 Timer functions	2-35
2.6.2 Timer 3 and timer 4 when reset and when executing STP instruction	2-39
Liel more e and aner i men recet and when exceeding off more definition	2 00

2.7 Serial I/O	2-40
2.7.1 Structure of serial I/O	2-40
2.7.2 Serial I/O register (address 00DD ₁₆)	
2.7.3 Clock source generating circuit	
2.7.4 Serial input/output common transmission/reception mode	
2.7.5 Serial I/O data receive method (when an internal clock is selected)	2-43
2.7.6 Serial I/O data transmit method (when an external clock is selected)	
2.7.7 Note when selecting a synchronous clock	
2.8 Multi-master I ² C-BUS interface	
2.8.1 Construction of multi-master I ² C-BUS interface	
2.8.2 Multi-master I ² C-BUS interface-related registers	
2.8.3 START condition, STOP condition generation method	
2.9 A-D comparator	
	2-63
2.10.1 8-bit PWM registers (addresses 00D016 to 00D416 and 00F616)	
/DA registers (addresses 00CE ₁₆ and 00CF ₁₆)	
2.10.2 14-bit PWM (DA output)	
2.10.3 8-bit PWM (PWM0 to PWM5: address 00D016 to 00D416 and 00F616)	
2.10.4 14-bit PWM output control	
2.10.5 8-bit PWM output control	
2.11 CRT display function	
2.11.1 Display position	
2.11.2 Character size	
2.11.3 Memory for display	
2.11.4 Color registers	
2.11.5 Multiline display	
2.11.6 Character border function	
2.11.7 CRT output pin control	
2.11.8 Raster coloring function	
2.11.9 Clock for display	2-88
2.12 ROM correction function	
2.13 Software runaway detect function	
2.14 Low-power dissipation mode	2-91
2.14.1 Stop mode	
2.14.2 Walt Mode	
2.14.3 Interrupts in low-power dissipation mode	
2.15 1 Poset operation	
2.15.1 Reset operation	
2.15.2 Internal state inimediately diter reset	2-90 2
2.10.5 Notes for poweron reset	2-99 2_100
2.10 Ground generating Ground	2-100 -2 104 -2
	2-101

CHAPTER 3. ELECTRICAL CHARACTERISTICS

3.1 Electrical characteristics	3-2
3.2 Standard characteristics	3-6

CHAPTER 4. M37220M3-XXXSP/FP

4.1 Performance overview	4-2
4.2 Pin configuration	4-4
4.3 Pin description	4-6
4.4 Functional block diagram	4-8
4.5 Functional description	4-9
4.5.1 Access area	4-10
4.5.2 Memory assignment	4-11
4.5.3 Input/Output pins	4-14
4.5.4 Interrupts	4-15
4.5.5 D-A converter	4-17
4.5.6 CRT Display function	4-19
4.5.7 Internal state immediately after reset	4-26
4.6 Electrical characteristics	4-28
4.7 Standard characteristics	4-32

CHAPTER 5. APPLICATION

5.1 Example of multi-line display	5-2
5.1.1 Specifications	5-2
5.1.2 Connection example	5-2
5.1.3 General flowchart	5-3
5.1.4 Set of display character data	5-6
5.1.5 Line counter	5-7
5.1.6 Processing time	5-8
5.1.7 Set of multiple interrupts	5-9
5.2 Notes on programming for OSD (M37220M3-XXXSP/FP)	5-13
5.2.1 Setting of color registers	5-13
5.2.2 Setting of border selection register	5-14
5.2.3 Number of display characters	5-14
5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)	5-15
5.3.1 Connection example	5-15
5.3.2 Correction example	5-15
5.3.3 E ² PROM map	5-17
5.3.4 General flowchart	5-19
5.3.5 Notes on use	5-20
5.4 Example of I ² C-BUS interface control (M37221Mx-XXXSP/FP)	5-21
5.4.1 Specifications	5-21
5.4.2 Connection example	5-21
5.4.3 E ² PROM functions	5-22
5.4.4 General flowchart	5-23
5.5 Example of I ² C-BUS control by software (M37220M3-XXXSP/FP)	5-26
5.5.1 Specifications	5-26
5.5.2 Connection example	5-26
5.5.3 Single-chip color TV signal processor function	5-27
5.5.4 General flowchart	5-28
5.5.5 Data setting according to key processing	5-34
5.5.6 Flowchart of data setting according to key processing	5-36
5.5.7 Register map	5-39
5.6 Application circuit example	5-45
5.6.1 Application circuit example 1	5-45
5.6.2 Application circuit example 2	5-46

Table of contents

CHAPTER 6. APPENDIX

6.1 Package outline	6-2
6.2 Termination of unused pins	6-3
6.3 Notes on use	6-4
6.3.1 Notes on processor status register	6-4
6.3.2 Notes on decimal operation	6-5
6.3.3 Notes on Interrupts	6-5
6.3.4 Notes on serial I/O	6-6
6.3.5 Notes on timer	6-7
6.3.6 Notes on A-D comparator	6-8
6.3.7 Note on RESET pin	6-8
6.3.8 Notes on input and output pins	6-9
6.3.9 Note on JMP instruction	6-9
6.3.10 Note on multi-master I ² C-BUS interface	6-10
6.3.11 Termination of unused pins	6-10
6.4 Counter measures against noise	6-11
6.4.1 Shortest wiring length	6-11
6.4.2 connection of a bypass capacitor across Vss line and Vcc line	6-13
6.4.3 Wiring to analog input pins	6-13
6.4.4 Oscillator concerns	6-14
6.4.5 Setup for I/O ports	6-15
6.4.6 Providing of watchdog timer function by software	6-16
6.5 Memory assignment	6-17
6.6 SFR assignment	6-20
6.7 Control registers	6-30
6.8 Ports	6-51
6.9 Machine instruction table	6-53
6.10 Instruction code table	6-63
6.11 Mask ROM ordering method	6-64
6.12 Mark specification form	6-80

CHAPTER 1. OVERVIEW

Fig.	1.2.1	Pin configuration (top view) (1) 1	1-5
Fig.	1.2.2	Pin configuration (top view) (2) 1	1-6
Fig.	1.4.1	Functional block diagram1	1-9

CHAPTER 2. FUNCTIONAL DESCRIPTION

Fig. 2.1.1 Registers configuration diagram	2-2
Fig. 2.1.2 CPU mode register	2-3
Fig. 2.1.3 Sequence of push onto/pop from a stack during interrupts and	
subroutine calls	2-5
Fig. 2.1.4 Contents of stack after execution of BRK instruction	2-7
Fig. 2.2.1 Access area of M37221M4-XXXSP and M37221M6-XXXSP/FP	
Fig. 2.2.2 Access area of M37221M8-XXXSP and M37221MA-XXXSP	
Fig. 2.3.1 Memory assignment of M37221M4-XXXSP and M37221M6-XXXSP/FP	2-11
Fig. 2.3.2 Memory assignment of M37221M8-XXXSP and M37221MA-XXXSP	2-12
Fig. 2.3.3 Memory map of SFR (special function register) (1)	2-13
Fig. 2.3.4 Memory map of SFR (special function register) (2)	2-14
Fig. 2.3.5 Memory map of 2 page register (only M37221M8-XXXSP and	
M37221MA-XXXSP)	2-15
Fig. 2.3.6 I/O setting example of port	2-16
Fig. 2.3.7 Access to timer registers	2-18
Fig. 2.4.1 I/O pin block diagram (1)	2-24
Fig. 2.4.2 I/O pin block diagram (2)	2-25
Fig. 2.5.1 VsyNc interrupt generation timing	2-27
Fig. 2.5.2 Interrupt control logic	2-29
Fig. 2.5.3 Interrupt request register 1 (address 00FC16)	2-30
Fig. 2.5.4 Interrupt request register 2 (address 00FD ₁₆)	2-30
Fig. 2.5.5 Interrupt control register 1 (address 00FE ₁₆)	2-31
Fig. 2.5.6 Interrupt control register 2 (address 00FF ₁₆)	2-31
Fig. 2.5.7 Interrupt input polatiry register (address 00F9 ₁₆)	2-32
Fig. 2.5.8 CRT port control register (address 00EC16)	2-32
Fig. 2.5.9 Interrupt control system	2-33
Fig. 2.5.10 Interrupt vector table	2-33
Fig. 2.6.1 Timer 1, timer 2, timer 3, and timer 4 block diagram	2-34
Fig. 2.6.2 Timer overflow timing	2-35
Fig. 2.6.3 Timer 12 mode register (address 00F4 ₁₆)	2-36
Fig. 2.6.4 Timer 34 mode register (address 00F516)	2-37
Fig. 2.6.5 Example of timer system	2-38
Fig. 2.7.1 Serial I/O block diagram	2-41
Fig. 2.7.2 Serial I/O mode register (address 00DC16)	2-41
Fig. 2.7.3 Serial input/output common transfer mode block diagram	2-42
Fig. 2.7.4 Serial I/O register when receiving (when SM5 = "0")	2-43
Fig. 2.7.5 Serial I/O register when transmitting (when SM5 = "0")	2-44
Fig. 2.7.6 Timing diagram of serial I/O	2-45
Fig. 2.7.7 Connection example for serial I/O transmit/receive	2-46
Fig. 2.7.8 Serial data transmit/receive processing sequence	2-46

Fig. 2.8.1 Block diagram of multi-masteer I ² C-BUS interface	. 2-48
Fig. 2.8.2 I ² C data shift register	2-49
Fig. 2.8.3 I ² C address register	2-50
Fig. 2.8.4 I ² C clock control register	2-52
Fig. 2.8.5 Connection port control by BSEL0 and BSEL1	. 2-53
Fig. 2.8.6 I ² C control register	2-54
Fig. 2.8.7 Interrupt request signal generating timing	. 2-57
Fig. 2.8.8 I ² C status register	2-57
Fig. 2.8.9 START condition generation timing diagram	. 2-58
Fig. 2.8.10 STOP condition generation timing diagram	. 2-58
Fig. 2.8.11 START condition/STOP condition detect timing diagram	. 2-59
Fig. 2.8.12 Address data communication format	. 2-60
Fig. 2.9.1 A-D comparator block diagram	. 2-61
Fig. 2.9.2 A-D control register 1 (address 00EE16)	. 2-62
Fig. 2.9.3 A-D control register 2 (address 00EF16)	. 2-62
Fig. 2.10.1 14-bit PWM (DA) block diagram	. 2-63
Fig. 2.10.2 8-bit PWM block diagram	2-64
Fig. 2.10.3 14-bit PWM output example (f(X _{IN}) = 8 MHz)	. 2-66
Fig. 2.10.4 Pulse waveforms corresponding to weight of each bit of 8-bit PWM register	2-68
Fig. 2.10.5 Example of 8-bit PWM output	. 2-68
Fig. 2.10.6 PWM output control register 1 (address 00D516)	. 2-69
Fig. 2.10.7 PWM output control register 2 (address 00D616)	. 2-70
Fig. 2.11.1 Structure of CRT display character	. 2-71
Fig. 2.11.2 CRT display circuit block diagram	. 2-72
Fig. 2.11.3 CRT control register (address 00EA16)	. 2-73
Fig. 2.11.4 Count method of synchronous signal	. 2-74
Fig. 2.11.5 Display position	2-75
Fig. 2.11.6 Vertical position register n (addresses 00E116 and 00E216)	.2-76
Fig. 2.11.7 Horizontal position register (address 00E016)	. 2-76
Fig. 2.11.8 Character size register (address 00E4 ₁₆)	. 2-77
Fig. 2.11.9 Display start position (horizontal direction) for each character size	.2-77
Fig. 2.11.10 Example of display character data storing form	. 2-78
Fig. 2.11.11 Structure of CRT display RAM	. 2-81
Fig. 2.11.12 Color register n (addresses 00E616 to 00E916)	. 2-82
Fig. 2.11.13 Generation timing of CRT interrupt request	. 2-84
Fig. 2.11.14 Display state of blocks and occurrence of CRT interrupt request	.2-84
Fig. 2.11.15 Border example	2-85
Fig. 2.11.16 Border selection register (address 00E5 ₁₆)	. 2-85
Fig. 2.11.17 CRT port control register (address 00EC ₁₆)	. 2-86
Fig. 2.11.18 MUTE signal output example	. 2-87
Fig. 2.11.19 CRT clock selection register	. 2-88
Fig. 2.12.1 ROM correction address registers	. 2-89
Fig. 2.12.2 ROM correction enable register	. 2-89
Fig. 2.13.1 Sequence at detecting software runaway detection	. 2-90
Fig. 2.14.1 Oscillation stabilizing time at return by reset input	. 2-92
Fig. 2.14.2 Execution sequence example at return by occurrence of INT0 interrupt	
request	2-92
Fig. 2.14.3 Reset input time	2-93
Fig. 2.14.4 State transitions of low-power dissipation mode	. 2-94

Fig. 2.15.1 Timing diagram at reset	2-95
Fig. 2.15.2 Internal state immediately after reset (1)	2-96
Fig. 2.15.3 Internal state immediately after reset (2)	2-97
Fig. 2.15.4 Internal state immediately after reset (3) (only M37221M8/MA-XXXSP)	2-98
Fig. 2.15.5 Voltage at poweron reset	2-99
Fig. 2.15.6 Example of reset circuit (1)	2-99
Fig. 2.15.7 Example of reset circuit (2)	2-99
Fig. 2.16.1 Clock generating circuit block diagram	2-100
Fig. 2.17.1 Clock oscillation circuit using a ceramic resonator	2-101
Fig. 2.17.2 External clock input circuit example	2-101
Fig. 2.17.3 Clock oscillation circuit for CRT display	2-101

CHAPTER 3. ELECTRICAL CHARACTERISTICS

Fig. 3.1.1 Definition diagram of timing on multi-master I²C-BUS.......3-5

CHAPTER 4. M37220M3-XXXSP/FP

Fig. 4.2.1 Pin configuration (top view) (1)	4-4
Fig. 4.2.2 Pin configuration (top view) (2)	4-5
Fig. 4.4.1 Functional block diagram	4-8
Fig. 4.5.1 Access area	4-10
Fig. 4.5.2 Memory assignment	4-11
Fig. 4.5.3 Memory map of SFR (special function register) (1)	4-12
Fig. 4.5.4 Memory map of SFR (special function register) (2)	4-13
Fig. 4.5.5 Interrupt request register 1 (address 00FC16)	4-16
Fig. 4.5.6 Interrupt control register 1 (address 00FE16)	4-16
Fig. 4.5.7 D-A converter block diagram	4-17
Fig. 4.5.8 DA n conversion register (addresses 00DE16 and 00DF16)	4-18
Fig. 4.5.9 Port P3 output mode control register (address 00CD16)	4-18
Fig. 4.5.10 CRT display circuit block diagram	4-20
Fig. 4.5.11 Example of display character data storing form	4-21
Fig. 4.5.12 Structure of CRT display RAM	4-23
Fig. 4.5.13 Border selection register (addresses 00E516)	4-24
Fig. 4.5.14 Color register n (addresses 00E616 to 00E916)	4-24
Fig. 4.5.15 CRT control register (address 00EA16)	4-25
Fig. 4.5.16 CRT port control register (address 00EC16)	4-25
Fig. 4.5.17 Internal state immediately after reset (1)	4-26
Fig. 4.5.18 Internal state immediately after reset (2)	4-27

CHAPTER 5. APPLICATION

Fig. 5.1.1 Connection example	5-2
Fig. 5.1.2 Display example	5-2
Fig. 5.1.3 Flowchart of initialization processing routine	5-3
Fig. 5.1.4 Flowchart of V _{SYNC} interrupt processing routine	5-4
Fig. 5.1.5 Flowchart of CRT interrupt processing routine	5-5
Fig. 5.1.6 Set of display character data	5-6
Fig. 5.1.7 Example of setup timing for line counter and display character data	5-7
Fig. 5.1.8 Timing of interrupt processing when not setting multiple interrupts	5-9
Fig. 5.1.9 Timing when all interrupt request bits are "1" at the same sampling poin	t 5-10

Fig. 5.1.10 Flowchart of CRT interrupt processing routine	
(when setting multiple interrupts)	5-11
Fig. 5.1.11 Flowchart of VSYNC interrupt processing routine	
(when setting multiple interrupts)	5-12
Fig. 5.2.1 Color register n (M37221ERSS)	5-13
Fig. 5.2.2 Color register n (M37220M3-XXXSP/FP)	5-14
Fig. 5.2.3 Border selection register (M37220M3-XXXSP/FP)	5-14
Fig. 5.3.1 Connection example	5-15
Fig. 5.3.2 Correction example (1)	5-15
Fig. 5.3.3 Correction example (2)	5-16
Fig. 5.3.4 E ² PROM map when using ROM correction function (1)	5-17
Fig. 5.3.5 E ² PROM map when using ROM correction function (2)	5-18
Fig. 5.3.6 General flowchart when using ROM correction function	5-19
Fig. 5.4.1 Connection example	5-21
Fig. 5.4.2 Byte write timing	5-22
Fig. 5.4.3 Random address read timing	5-22
Fig. 5.4.4 Flowchart of write processing routine	5-23
Fig. 5.4.5 Flowchart of read processing routine	5-24
Fig. 5.4.6 Flowchart of data output processing routine	5-25
Fig. 5.5.1 Connection example	5-26
Fig. 5.5.2 Staus read timing	5-27
Fig. 5.5.3 Byte write timing	5-27
Fig. 5.5.4 Flowchart of write processing routine	5-28
Fig. 5.5.5 Flowchart of read processing routine	5-29
Fig. 5.5.6 Flowchart of data output processing routine	5-30
Fig. 5.5.7 Flowchart of START condition processing routine	5-31
Fig. 5.5.8 Flowchart of STOP condition processing routine	5-31
Fig. 5.5.9 Flowchart of bus H processing routine	5-31
Fig. 5.5.10 Flowchart of data input processing routine	5-32
Fig. 5.5.11 Flowchart of return ACK processing routine	5-33
Fig. 5.5.12 Flowchart of return NACK processing routine	5-33
Fig. 5.5.13 Flowchart of power on processing	5-36
Fig. 5.5.14 Flowchart of "CH UP/DOWN key" input processing	5-37
Fig. 5.5.15 Flowchart of "picture memory switching key" input processing	5-38
Fig. 5.5.16 Status data register	5-39
Fig. 5.5.17 Map of write data register	5-41
Fig. 5.6.1 Application circuit example 1 (I ² C-BUS chassis)	5-45
Fig. 5.6.2 Application circuit example 2 (Non-BUS chassis)	5-46

CHAPTER 6. APPENDIX

Fig. 6.3.1 Initialization of flags in PS	6-4
Fig. 6.3.2 Stack contents after PHP instruction execution	6-4
Fig. 6.3.3 Note when executing PLP instruction	6-4
Fig. 6.3.4 Note in decimal arithmetic operation	6-5
Fig. 6.3.5 Execution of BBC or BBS instruction	6-5
Fig. 6.3.6 Sequence for switching an external interrupt detection edge	6-6
Fig. 6.3.7 Initialization for serial I/O	6-6
Fig. 6.3.8 Relation between timer values and their values read	
(timer setting value = 2)	6-7
Fig. 6.3.9 Relation between timer values and their values read when two timers are connected in series (timers 1 and 2 are connected, timer 1 setting value = 2	,
timer 2 setting value = 1)	6-7

F	ig. 6.4.1 Wiring for RESET input pin	6-11
F	ig. 6.4.2 Wiring for clock I/O pin	6-11
F	ig. 6.4.3 Wiring for CNVss pin	6-12
F	ig. 6.4.4 Wiring for VPP pin of One Time PROM and EPROM version	6-12
F	ig. 6.4.5 Bypass capacitor across Vss line and Vcc line	6-13
F	ig. 6.4.6 Analog signal line and resistor and capacitor	6-13
F	ig. 6.4.7 Wiring for large current signal line	6-14
F	ig. 6.4.8 Wiring for signal line where potential levels charge frequently	6-14
F	ig. 6.4.9 Vss pattern on underside of an oscillator	6-14
F	ig. 6.4.10 Setup for I/O ports	6-15
F	ig. 6.4.11 Watchidog timer by software	6-16
F	ig. 6.5.1 Memory assignment of M37221M4-XXXSP and M37221M6-XXXSP/FP	6-17
F	ig. 6.5.2 Memory assignment of M37221M8-XXXSP and M37221MA-XXXSP	6-18
F	ig. 6.5.3 Memory assignment of M37220M3-XXXSP/FP	6-19
F	ig. 6.6.1 SFR assignment (including internal state immediately after reset and	
_	access characteristics) (1) (M37221Mx-XXXSP/FP)	6-20
F	ig. 6.6.2 SFR assignment (including internal state immediately after reset and	0.00
-	access characteristics) (2) (M37221MX-XXXSP/FP)	6-22
F	Ig. 6.6.3 Memory map of 2 page register (including internal state immediately	
	aner reset and access characteristics) (3)	6.24
	(Only MS7221M6-AAASP and MS7221MA-AAASP)	0-24
Г	after reset and access characteristics) (4) (M27220M2 XXXSD/ED)	6 26
F	in 665 SER assignment (including internal state immediately	0-20
'	after reset and access characteristics) (5) (M37220M3-XXXSP/ED)	6-28
F	in 6.7.1 Port Di direction register	6-30
F	ig 6.7.2 Port P3 direction register	0-30 6-30
F	ig 6.7.3 Port P5 direction register	0-30 6-31
F	ig 674 Port P3 output mode control register	6-31
F	ig 675 PWM output control register 1	6-32
F	ig 6.7.6 PWM output control register 2	6-32
F	ig. 6.7.7 I ² C data shift register	6-33
F	ig. 6.7.8 l ² C address register	6-33
F	ig. 6.7.9 l ² C status register	6-34
F	ig. 6.7.10 I ² C control register	6-35
F	ig. 6.7.11 I ² C clock contorol register	6-36
F	ig. 6.7.12 Serial I/O mode register	6-37
F	ig. 6.7.13 DA conversion register n (only M37220M3-XXXSP/FP)	6-38
F	ig. 6.7.14 Horizontal position register	6-38
F	ig. 6.7.15 Vertical position register n	6-39
F	ig. 6.7.16 Character size register	6-39
F	ig. 6.7.17 Border selection register	6-40
F	ig. 6.7.18 Color register n	6-41
F	ig. 6.7.19 CRT control register	6-42
F	ig. 6.7.20 CRT port control register	6-43
F	ig. 6.7.21 CRT clock selection register	6-44
F	ig. 6.7.22 CRT A-D control register 1	6-45
F	ig. 6.7.23 A-D control register 2	6-45
F	ig. 6.7.24 Timer 12 mode register	6-46
F	ig. 6.7.25 Timer 34 mode register	6-47
F	ig. 6.7.26 Interrupt input polarity register	6-47
F	ig. 6.7.27 CPU mode register	6-48

Fig. 6.7.28 Interrupt request register 1	6-48
Fig. 6.7.29 Interrupt request register 2	6-49
Fig. 6.7.30 Interrupt control register 1	6-49
Fig. 6.7.31 Interrupt control register 2	6-50
Fig. 6.7.32 ROM correction enable register	6-50
Fig. 6.8.1 I/O pin block diagram (1)	6-51
Fig. 6.8.2 I/O pin block diagram (2)	6-52

List of tables

CHAPTER 1. OVERVIEW	

Table 1.1.1 Performance overview (1)	1-3
Table 1.1.2 Performance overview (2)	1-4
Table 1.3.1 Pin description (1)	1-7
Table 1.3.2 Pin description (2)	1-8

CHAPTER 2. FUNCTIONAL DESCRIPTION

Table 2.2.1 Zero page addressing	. 2-10
Table 2.2.2 Special page addressing	2-10
Table 2.4.1 List of programmable port functions	2-22
Table 2.5.1 Interrupt sources, vector addresses and priority	2-26
Table 2.6.1 Memory map of timer-related registers	2-37
Table 2.6.2 Contents of timers 3 and 4 when reset or when executing STP instruction	2-39
Table 2.7.1 Clock source selection	2-42
Table 2.8.1 Multi-master I ² C-BUS interface functions	2-47
Table 2.8.2 START condition/STOP condition generation timing table	2-58
Table 2.8.3 START condition/STOP condition detect conditions	2-59
Table 2.9.1 Relationship between contents of A-D control register 2 and reference	
voltage "Vref"	. 2-62
Table 2.10.1 PWM function performance (at oscillation frequency = 8 MHz)	2-63
Table 2.10.2 The relation between D_L and t_m (m = "0" to "63")	2-65
Table 2.11.1 Outline of CRT display function	2-71
Table 2.11.2 Relationship between set value in character size register and character	
size	. 2-77
Table 2.11.3 Character code table (be omitted partly)	2-79
Table 2.11.4 Contents of CRT display RAM	2-80
Table 2.11.5 Display example of character background coloring (when green is set for	
a character and blue is set for background color)	2-83
Table 2.11.6 Relationship between set value of border selection register and character	r
border function	. 2-85
Table 2.14.1 State in stop mode	2-91
Table 2.14.2 State in wait mode	2-93
Table 2.14.3 Invalid interrupts in the wait mode	2-93

CHAPTER 4. M37220M3-XXXSP/FP

Table 4.1.1 Performance overview (1)	4-2
Table 4.1.2 Performance overview (2)	4-3
Table 4.3.1 Pin description (1)	4-6
Table 4.3.2 Pin description (2)	4-7
Table 4.5.1 Difference between M37220M3-XXXSP/FP and M37221M6-XXXSP/FP	4-9
Table 4.5.2 Difference of programmable ports between M37221M6-XXXSP/FP and	
M37220M3-XXXSP/FP	4-14
Table 4.5.3 Interrupt sources, vector addresses and priority	4-15
Table 4.5.4 Relationship between contents of D-A conversion register and	
output voltage "V"	4-17
Table 4.5.5 Outline of CRT display function	4-19
Table 4.5.6 Character code table (be omitted partly)	4-22
Table 4.5.7 Contents of CRT display RAM	4-22

CHAPTER 5. APPLICATION

Table 5.5.1 Data setting at tuning and searching	5-34
Table 5.5.2 Data setting at "volume UP/DOWN key" input	5-34
Table 5.5.3 Data setting at "screen-size-related keys" input	5-34
Table 5.5.4 Data setting at "picture data control key" and	
"picture memory switching key" input	5-34
Table 5.5.5 Data setting when changing AFT state	5-35
Table 5.5.6 Data setting when changing audio mute state	5-35
Table 5.5.7 Data setting when changing video mute state	5-35
Table 5.5.8 Data setting when adjusting white balance	5-35
Table 5.5.9 Relationship between DFA and DL TIME	5-42
Table 5.5.10 Setting of color system (at sub-address 0916, write data)	5-43

CHAPTER 6. APPENDIX

Table 6.2.1	Termination of	unused	pins	6-:	3
-------------	----------------	--------	------	-----	---

1.1 Performance overview1.2 Pin configuration1.3 Pin description1.4 Functional block diagram

OVERVIEW

1.1 Performance overview

1.1 Performance overview

The 8-bit microcomputers: -M37221M4-XXXSP -M37221M6-XXXSP/FP -M37221M8-XXXSP -M37221MA-XXXSP -M37220M3-XXXSP/FP have their simple instruction set; the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Furthermore, they have many additional functions for tuning system for TV: • PWM output (14-bit and 8-bit) • CRT display • A-D comparator (resistance string method) Software runaway detection Multi-master I²C-BUS interface function • ROM correction function And also, they can allow low power dissipation by the use of CMOS processing.

The M37221M6-XXXSP/FP is used as a general example in describing the functions of the above microcomputers, unless otherwise noted.

透 为 港 ³a · c ft.

The performance overview is shown in Table 1.1.1.

M37220M3-XXXSP/FP

Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

Table 1.1.1 Performance overview (1)

Pa	rameter		Performance	
Number of basic instru	uctions		71	
Instruction execution time			0.5 <i>µ</i> s (th	ne minimum instruction execution time, at 8
			MHz oscil	lation frequency)
Clock frequency			8 MHz (m	aximum)
Memory size	M37221M4-XX	XSP	ROM	16 K bytes
			RAM	320 bytes
	M37221M6-XX	XSP/FP	ROM	24 K bytes
			RAM	384 bytes
	M37221M8-XX	XSP	ROM	32 K bytes
			RAM	512 bytes
	M37221MA-XX	XSP	ROM	40 K bytes
			RAM	640 bytes
	CRT ROM		8 K bytes	
	CRT RAM		96 bytes	A ST C
Input/Output ports	P00-P07	I/O	8-bit X 1	N-channel open-drain output structure, can be
			used as P	WM output pins, INT input pins, A-D input pin)
	P10, P15-P17	1/0	4-bit × 1	(CMOS input/output structure, can be used as
			CRT outp	ut pin, A-D input pins, INT input pin)
	P11-P14	I/O	4-bit X 1	(CMOS input/output structure, can be used as
			multi-mas	ter I ² C-BUS interface)
	P20, P21	I/O	2-bit X 1	(CMOS input/output or N-channel open-drain
			output str	ucture, can be used as serial I/O pins)
	P22-P27	I/O	6-bit X 1	(CMOS input/output structure, can be used as
			serial inpu	ut pin, external clock input pins)
	P30, P31	I/O	2-bit X 1	(CMOS input/output or N-channel open-drain
			output str	ucture, can be used as A-D input pins)
	P32	I/O	1-bit X 1	(N-channel open-drain output structure)
	P33, P34	Input	2-bit X 1	(can be used as CRT display clock I/O pins)
	P5₂–P5₅	Output	4-bit X 1	(CMOS output structure, can be used as CRT
			output pin	us)
Serial I/O			8-bit X 1	
Multi-master I ² C-BUS i	interface		1 (2 syste	ems)
A-D comparator			6 channel	s (6-bit resolution)
PWM output circuit			14-bit X 1	I, 8-bit X 6
Timers			8-bit time	r X 4
ROM correction function	on (See note)		32 bytes	X 2

OVERVIEW

1.1 Performance overview

Table 1.1.2 Performan	ice overview (2)			
Pai	rameter	Performance		
Subroutine nesting M37221M4-XXXSP		96 levels (maximum)		
M37221M6-XXXSP/FP				
M37221M8-XXXSP 1		128 levels (maximum)		
	M37221MA-XXXSP			
Interrupt		External interrupt X 3, Internal timer interrupt X 4, Serial		
		I/O interrupt X 1, CRT interrupt X 1, Multi-master I ² C-		
		BUS interface interrupt x 1, $f(X_{IN})/4096$ interrupt x 1,		
		V _{SYNC} interrupt X 1, BRK interrupt X 1		
Clock generating circu	it	2 built-in circuits (externally connected to a ceramic		
		resonator or a quartz-crystal oscillator)		
Power source voltage		5 V ± 10 %		
Power dissipation	CRT ON	165 mW typ. (at oscillation frequency $f(X_{IN}) = 8$ MHz,		
		fcrt = 8 MHz)		
	CRT OFF	110 mW typ. (at oscillation frequency $f(X_{IN}) = 8$ MHz)		
	In stop mode	1.65 mW (maximum)		
12V withstand ports		6 3		
LED drive ports		4		
Operating temperature	range	-10 °C to 70 °C		
Device structure		CMOS silicon gate process		
Package	M37221M4-XXXSP	42-pin shrink plastic molded DIP		
	M37221M6-XXXSP	Geo		
	M37221M8-XXXSP			
	M37221MA-XXXSP			
	M37221M6-XXXFP	42-pin shrink plastic molded SOP		
CRT display function	Number of display characters	24 characters X 2 lines (maximum 16 lines by software)		
	Dot structure	12 X 16 dots		
	Kinds of characters	256 kinds		
	Kinds of character sizes	3 kinds		
	Kinds of character	Maximum 7 kinds (R, G, B); can be specified by the		
	colors	character		
	Display position (horizontal, vertical)	64 levels (horizontal) X 128 levels (vertical)		

Table 1.1.2 Performance overview (2)

Note: Only M37221M8-XXXSP and M37221MA-XXXSP have the function.

1.2 Pin configuration

1.2 Pin configuration

The pin configurations are shown in Figures 1.2.1 and 1.2.2.

M37220M3-XXXSP/FP

Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

OVERVIEW

1.2 Pin configuration

Fig. 1.2.2 Pin configuration (top view) (2)

1.3 Pin description

The pin description is shown in Table 1.3.1.

M37220M3-XXXSP/FP

Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

Table 1.3.1 Pin description (1)

Pin	Name	Input/	Functions
Vcc.	Power source	Output	Apply voltage of 5 V \pm 10 % (typical) to V _{cc} , and 0 V to V _{ss} .
Vss			
CNVss	CNVss		Connected to Vss.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for
	-		2 μ s or more (under normal V _{cc} conditions).
			If more time is needed for the quartz-crystal oscillator to stabilize, this
			"L" condition should be maintained for the required time.
XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating
			frequency, an external ceramic resonator or a quartz-crystal oscillator
			is connected between pins X_{IN} and X_{OUT} . If an external clock is used,
Хоит	Clock output	Output	the clock source should be connected to the X_{IN} pin and the X_{OUT} pin
			should be left open.
P00	I/O port P0	I/O	Port P0 is an 8-bit I/O port with direction register allowing each I/O bit
PWM0-			to be individually programmed as input or output. At reset, this port is
P05/			set to input mode. The output structure is N-channel open-drain output.
PWM5,			
P06/INT2/	PWM output	Output	Pins P00-P05 are also used as PWM output pins PWM0-PWM5
A-D4,			respectively. The output structure is N-channel open-drain output.
P07/INT1	External	Input	Pins P0 ₆ , P0 ₇ are also used as external interrupt input pins INT2,
	interrupt input		INT1 respectively.
	Analog input	Input	P0 ₆ pin is also used as analog input pin A-D4.
P10/OUT2,	I/O port P1	I/O	Port P1 is an 8-bit I/O port and has basically the same functions as
P11/SCL1,			port P0. The output structure is CMOS output.
P12/SCL2,	CRT output	Output	Pins P1 ₀ is also used as CRT output pin OUT2. The output structure
P13/SDA1,			is CMOS output.
P1₄/SDA2,	Multi-master	I/O	Pins P1 ₁ –P1 ₄ are used as SCL1, SCL2, SDA1 and SDA2 respectively,
P15/A-D1/	I ² C-BUS		when multi-master I ² C-BUS interface is used. The output structure is
INT3,	interface		N-channel open-drain output.
P16/A-D2,	Analog input	Input	Pins P15-P17 are also used as analog input pins A-D1 to A-D3
P17/A-D3			respectively.
	External	Input	P1₅ pin is also used as external interrupt input pin INT3.
	interrupt input		

OVERVIEW

1.3 Pin description

Table 1.3.2 Pin description (2)

Pin	Name	Input/	Functions
		Output	
P20/Sclk,	I/O port P2	I/O	Port P2 is an 8-bit I/O port and has basically the same functions as
P21/Sout,			port P0. The output structure is CMOS output.
P22/SIN,	External clock	Input	Pins P2 ₃ , P2 ₄ are also used as external clock input pins TIM3, TIM2
P2₃/TIM3,	input		respectively.
P2₄/TIM2,	Serial I/O	I/O	P2o pin is also used as serial I/O synchronous clock input/output pin
P25-P27	synchronous		Sclk. The output structure is N-channel open-drain output.
	clock input/		
	output		
	Serial I/O data	I/O	Pins P21, P22 are also used as serial I/O data input/output pins Sout,
	input/output		S _{IN} respectively. The output structure is N-channel open-drain output.
P30/A-D5/	I/O port P3	I/O	Ports P30–P32 are 3-bit I/O ports and have basically the same functions
DA1,			as port P0. Either CMOS output or N-channel open-drain output structure
P31/A-D6/			can be selected as the port P3 ₀ and P3 ₁ . The output structure of port
DA2, P32			P32 is N-channel open-drain output.
	Analog input	Input	Pins P30, P31 are also used as analog input pins A-D5, A-D6 respectively.
P33/OSC1,	Input port P3	Input	Ports P33, P34 are 2-bit input ports.
P34/OSC2	Clock input for	Input	P3₃ pin is also used as CRT display clock input pin OSC1.
	CRT display		
	Clock output for	Output	P3₄ pin is also used as CRT display clock output pin OSC2. The
	CRT display		output structure is CMOS output.
P52/R,	Output port P5	Output	Ports P5 ₂ -P5 ₅ are 4-bit output ports. The output structure is CMOS
P5₃/G,			output.
P54/B,	CRT output	Output	Pins P5₂–P5₅ are also used as CRT output pins R, G, B, OUT1
P5₅/OUT1			respectively. The output structure is CMOS output.
HSYNC	Hsync input	Input	This is a horizontal synchronous signal input for CRT.
VSYNC	V _{SYNC} input	Input	This is a vertical synchronous signal input for CRT.
D-A	DA output	Output	This is a 14-bit PWM output pin. The output structure is CMOS output.

1.4 Functional block diagram

1.4 Functional block diagram

The functional block diagram is shown in Figure 1.4.1.

M37220M3-XXXSP/FP

Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

1-9

CHAPTER 2 FUNCTIONAL DESCRIPTION

- 2.1 Central processing unit
- 2.2 Access area
- 2.3 Memory assignment
- 2.4 Input/Output pins

AT THE

- 2.5 Interrupts
- 2.6 Timers

3-2

- 2.7 Serial I/O
- 2.8 Multi-master I²C-BUS interface
- 2.9 A-D comparator
- 2.10 PWM
- 2.11 CRT display function
- 2.12 ROM correction function
- 2.13 Software runaway detect function
- 2.14 Low-power dissipation mode
- 2.15 Reset
- 2.16 Clock generating circuit
- 2.17 Oscillation circuit

2.1 Central processing unit

2.1 Central processing unit

The CPU of the M37221M6-XXXSP/FP has six main registers.

The program counter (PC) is a 16-bit register consists of PC_H and PC_L , both of which are 8-bit registers. The other five registers: the accumulator (A), index register X (X), index register Y (Y), stack pointer (S) and processor status register (PS), all have an 8-bit configuration.

Note: The contents of registers above except the following are indeterminate after a hardware reset. Therefore,

- initialize these registers by software.
- The Interrupt disable flag I of the processor status register = "1"
- The program counter = the contents of addresses FFFE₁₆ and FFFF₁₆

Figure 2.1.1 shows the registers configuration diagram of M37221M6-XXXSP/FP.

Fig. 2.1.1 Registers configuration diagram

2.1.1 Accumulator (A)

The accumulator is the central register of the microcomputer and 8-bit register.

This general-purpose register is used with considerable for arithmetic operations, data transfer, temporary clearing, condition judgments, etc.

2.1.2 Index register X (X), index register Y (Y)

The M37221M6-XXXSP/FP has the index register X and the index register Y, both of which are 8-bit registers.

In the addressing modes which use these index registers, the register contents are added to the specified address and this becomes the actual address. These modes are used for referencing subroutine tables and memory tables.

The index registers, which have increment, decrement, comparison and data transfer functions, are also used as simple accumulators.

2.1 Central processing unit

2.1.3 Stack pointer (S)

The stack pointer is an 8-bit register used for interrupts and subroutine calls.

The stack area can be assigned into the internal RAM.

The internal RAM of M37221M6-XXXSP/FP is assigned in the zero page and the page 1. The both area can use for the stack area. The stack area is specified with the CPU mode register (address 00FB₁₆). At reset, the stack area is specified to the page 1 automatically.

Note: Storing data in the stack area fills the RAM area with stored data in order, therefore make sure the depth of interrupt levels and the subroutine nesting.

The stack area and stack pointer (S) should be specified in the initialization of software. When the stack area is specified to "1," even if the value of stack pointer is over "00₁₆" (stack address is 0100₁₆), the stack area value never change to "0" automatically. Therefore in this case, change the stack area value by software.

Fig. 2.1.2 CPU mode register

With the stack pointer during a interrupt or subroutine call, the processing is performed automatically in the following sequence (refer to "Figure 2.1.3").

- ① The contents of high-order 8 bits of the program counter (PCH) are stored at an address indicated as below:
 - The high-order 8 bits are the stack area value ("0016" or "0116").
 - The low-order 8 bits are the stack pointer contents.
- ^② The stack pointer contents are decremented by 1.
- ③ The contents of low-order 8 bits of the program counter (PCL) are stored at an address indicated as below:
 - The high-order 8 bits are the stack area value (" 00_{16} " or " 01_{16} ").
 - The low-order 8 bits are the stack pointer contents.
- ④ The stack pointer contents are decremented by 1.
- ⑤ The contents of the processor status register (PS) are stored at an address indicated as below:
 - The high-order 8 bits are the stack area value (" 00_{16} " or " 01_{16} ").
 - The low-order 8 bits are the stack pointer contents.
- [®] The stack pointer contents are decremented by 1.

2.1 Central processing unit

Storing of the processor status register in items (5) and (6) above is not performed during a subroutine call. Execute the **PHP** instruction in a program to push the processor status register onto a stack.

To prevent data from losing during interrupts and subroutine calls, push the other registers onto a stack by software as described above.

For example, execute the **PHA** instruction to push the accumulator contents onto a stack. Executing the **PHA** instruction stores the accumulator contents at an address indicated as below:

- The high-order 8 bits are the stack area value (" 00_{16} " or " 01_{16} ").
- The low-order 8 bits are the stack pointer contents.

The stack pointer contents are then decremented by 1.

Execute the RTI instruction to return from an interrupt routine.

When the **RTI** instruction is executed, the processing is performed automatically in the following sequence (refer to "Figure 2.1.3").

① The stack pointer contents are incremented by 1.

- ^② The contents at the address indicated as below are restored to the processor status register.
 - The high-order 8 bits are the stack area value ("0016" or "0116").
 - The low-order 8 bits are the stack pointer contents.
- ③ The stack pointer contents are incremented by 1.
- ④ The contents at the address indicated as below are restored to low-order 8 bits of the program counter (PCL).
 - The high-order 8 bits are the stack area value ("0016" or "0116").
 - The low-order 8 bits are the stack pointer contents.
- ⑤ The stack pointer contents are incremented by 1.
- ⑥ The contents at the address indicated as below are restored to high-order 8 bits of the program counter (PC_H).
 - The high-order 8 bits are the stack area value ("0016" or "0116").
 - The low-order 8 bits are the stack pointer contents.

Restoring of the processor status register in items ① and ② above is not performed in this case. Execute the **RTS** instruction to return from a subroutine.

Execute the **PLP** instruction and **PLA** instruction to restore the processor status register and the accumulator, respectively.

Executing the **PLP** (**PLA**) instruction increments the stack pointer by 1 and restores the contents at the address indicated as below to the processor status register.

- The high-order 8 bits are the stack area value ("0016" or "0116").
- The low-order 8 bits are the stack pointer.

2.1 Central processing unit

Fig. 2.1.3 Sequence of push onto/pop from a stack during interrupts and subroutine calls

2.1 Central processing unit

2.1.4 Program counter (PC)

The program counter is a 16-bit counter consists of PC_{H} and PC_{L} , both of which are 8-bit registers. The program counter indicates the address of the program to be executed next.

The M37221M6-XXXSP/FP uses the stored program system. To start a new operation, transfer the instruction and the data, from the memory to the CPU. Ordinary, the program counter is controlled to indicate the memory address to be sent next. After each instruction is executed, the instruction required next is called out and this cycle is repeated until finished.

Note: The program counter of the M37221M6-XXXSP/FP is controlled automatically; however, make sure to avoid differences between program flow and the program counter contents when operating the stack pointer or directly changing the program counter contents.

2.1.5 Processor status register (PS)

The processor status register is an 8-bit register. It consists of 5 flags, which indicate the state after arithmetic operations related to the internal CPU, and 3 flags which determine operation.

The following explains each of these flags. Refer to "6.9 Machine instruction table" of this USER'S MANUAL or "SERIES 740 <SOFTWARE> USER'S MANUAL" concerning the change of these flags.

- (2) Zero flag (Z)Bit 1 This flag is set to "1" when the result of an arithmetic operation or a data transfer is "0" and is cleared to "0" by any other result. This flag has no meaning in the decimal mode.

(4) Decimal operation mode flag (D) Bit 3

This flag determines whether addition and substruction are performed in binary or decimal notation. Binary arithmetic is performed when this flag is "0" and decimal arithmetic is performed with treating each word as a 2-digit decimal when this flag is "1." Decimal adjust is performed automatically at this time. This flag is set to "1" by using the **SED** instruction and is cleared to "0" by using the **CLD** instruction. Only the **ADC** and **SBC** instructions are used for decimal arithmetic. Since this flag directly affects calculations, always initialize it after a reset.

(5) Break flag (B)..... Bit 4

This flag determines whether or not an interrupt occurred by using the **BRK** instruction. When a BRK instruction interrupt occurs, the flag B is set to "1"; for all other interrupts the flag is set to "0" and pushed to the stack.

For the M37221M6-XXXSP/FP, interrupt vectors by using the **BRK** instruction are independent of other interrupts, and it is possible to determine the cause of interrupt by jumping to the vector address inherent to each interrupt. Therefore, it is not specifically necessary to refer to this flag.

Note: The BRK instruction will be used for debugging.

2.1 Central processing unit

Fig. 2.1.4 Contents of stack after execution of BRK instruction

(6) X modified operation mode flag (T) Bit 5

This flag determines whether arithmetic operations are performed via the accumulator or directly between memories. When the flag is set to "0", arithmetic operations are performed between the accumulator and memory. When "1," arithmetic operations are performed directly between memories. This flag is set to "1" with the **SET** instruction and is cleared to "0" with the **CLT** instruction. Since this flag directly affects calculations, always initialize it after a reset.

32 - 2 %

- When the T flag = "0"
 - A←A ***** M
 - * : indicates an arithmetic operation
 - A : accumulator contents

– M: contents of the memory specified by the addressing of the arithmetic operation $_$

- When the T flag = "1"
 - M1←M1 ***** M2
 - * : indicates arithmetic operation
 - M1: contents of memory specified directly with index register X
- \perp M2: contents of the memory specified by the addressing of the arithmetic operation \perp

(7) Overflow flag V..... Bit 6

This flag is set to "1" when an overflow occurs in the result of an arithmetic operation involving signs. An overflow occurs when the result of an addition or subtraction exceeds +127 (7F₁₆) or -128 (80₁₆). The **CLV** instruction clears the overflow flag to "0." There is no instruction for setting this flag to "1." When the **BIT** instruction is executed except the above, bit 6 of the memory executed by the **BIT** instruction is set to the overflow flag.

This flag has no meaning in decimal mode.

Note: Overflows do not occur when the result of an addition or subtraction is smaller than the above numerical values or an addition is performed between different signs.

(8) Negative flag (N) Bit 7

This flag is set to "1" when the result of a data transfer or arithmetic operation is negative (bit 7 is "1"). When the **BIT** instruction is executed, bit 7 of the memory executed by the **BIT** instruction is set to the negative flag. This flag can be used to determine whether the results of arithmetic operations are positive or negative, and also to perform a simple bit test. There are no instructions for directly setting or clearing this flag.

This flag has no meaning in decimal mode.

2.2 Access area

2.2 Access area

The ROM, RAM and various I/O control registers are assigned within the same memory area. Therefore, the same instructions are used for data transfers and arithmetic operations without making any distinction between memory and I/O.

Since the program counter is a 16-bit register, 64 K-byte memory area can be accessed: from addresses as 0000₁₆ to FFFF₁₆.

The first 256 bytes of the 64 K-byte memory area are called the "zero page" and the last 256 bytes are called the "special page." These areas can be accessed with only 2 bytes by using each special addressing mode.

M37220M3-XXXSP/FP Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

Fig. 2.2.1 Access area of M37221M4-XXXSP and M37221M6-XXXSP/FP

2.2 Access area

Fig. 2.2.2 Access area of M37221M8-XXXSP and M37221MA-XXXSP
2.2 Access area

2.2.1 Zero page (addresses 000016 to 00FF16)

The 256 bytes from address 0000_{16} to address $00FF_{16}$ are called "zero page".

The internal RAM, I/O ports, timer, serial I/O, A-D comparison, PWM output, CRT display and interrupt related registers all present within this area.

These registers were called "special function registers" in distinction from the accumulator, index registers and so on in the CPU.

The addressing modes as shown in Table 2.2.1 are used to specify memory (RAM) and special function registers in the zero page area.

Those modes dedicated to the zero page area are marked with a symbol (*).

This area can be accessed with shorter instructions by using these modes.

Table 2.2.1 Zero page addressing

	-
Addressing mode	Bytes required
* Zero page	2
* Zero page Indirect	2
* Zero page X	2
* Zero page Y	2
* Zero page Bit	2
* Zero page Bit Relative	3
Absolute	3
Absolute X	3
Absolute Y	3
Relative	2
Indirect	3
Indirect X	2
Indirect Y	2

2.2.2 Special page (addresses FF00₁₆ to FFFF₁₆)

The 256 bytes from address FF00₁₆ to address FFFF₁₆ within the internal ROM are called "special page area".

The addressing modes as shown in Table 2.2.2 are used to specify memory in the special page area. Those modes dedicated to the special page area are marked with a symbol (*).

This area can be accessed with shorter instructions by using these modes.

Subroutines used with considerable frequency are ordinary assigned in this area.

Table 2.2.2 Special page addressing

Addressing mode	Bytes required
* Special page	2
Absolute	3
Absolute X	3
Absolute Y	3
Relative	2
Indirect	3
Indirect X	2
Indirect Y	2

2.3 Memory assignment

2.3 Memory assignment

Figures 2.3.1 and 2.3.2 show the memory assignment. The ROM, RAM and I/O assigned in this memory area are described below.

M37220M3-XXXSP/FP

Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

Fig. 2.3.1 Memory assignment of M37221M4-XXXSP and M37221M6-XXXSP/FP

Fig. 2.3.2 Memory assignment of M37221M8-XXXSP and M37221MA-XXXSP

	<bit< th=""><th>allo</th><th>catio</th><th>on></th><th></th><th></th><th></th><th></th><th><state after="" immediately="" reset=""></state></th></bit<>	allo	catio	on>					<state after="" immediately="" reset=""></state>
	Name	: } F	unct	ion t	oit				0 : "0" immediately after reset
		: No	func	tion b	oit				? : Indeterminate immediately
	0	: Fix (do	this o not	bit t writ	to "0 e "1	" ")			after reset
	1	: Fix (do	this not	bit t writ	to "1 e "0"	" ")			
Address Register	h7		Bit	allo	catio	on		Ь О	State immediately after reset
C016 Port P0 (P0)								00	?
C1 ₁₆ Port P0 direction register (D0)									0016
C2 ₁₆ Port P1 (P1)									?
C3 ₁₆ Port P1 direction register (D1)									0016
C4 ₁₆ Port P2 (P2)									?
C5 ₁₆ Port P2 direction register (D2)									0016
C616 Port P3 (P3)							a.	69	0 0 ? ? ? ? ?
C7 ₁₆ Port P3 direction register (D3)						A	3	100	0016
C816					X	2	÷.,		?
C916					4 386	-	0		?
CA ₁₆ Port P5 (P5)						C			0 0 ? ? ? ? ? ? ?
CB ₁₆ Port P5 direction register (D5)		Ą							0016
CD16 Port P3 output mode control register (P3S)		Á			0	0	D210	B 208	<u>í</u> 001c
CE_{16} DA-H register (DA-H)					0	0	F313	F 303	2
CE16 DA-L register (DA-L)									
D016 PWM0 register (PWM0)								I	
D1 ₁₆ PWM1 register (PWM1)									2
D2 ₁₆ PWM2 register (PWM2)									2
D3 ₁₆ PWM3 register (PWM3)									?
D4 ₁₆ PWM4 register (PWM4)									?
D5 ₁₆ PWM output control register 1 (PW)	PW7	PW6	PW5	PW4	PW3	PW2	PW1	PW0	0016
D616 PWM output control register 2 (PN)				PN4	PN3	PN2			0016
D716 I ² C data shift register (S0)	D7	D6	D5	D4	D3	D2	D1	D0	?
D816 I ² C address register (S0D)	SAD6	SAD5	SAD4	SAD3	SAD2	SAD1	SAD0	RBW	0016
D9 ₁₆ I ² C status register (S1)	MST	TRX	BB	PIN	AL	AAS	AD0	LRB	0 0 0 1 0 0 ?
DA16 I ² C control register (S1D)	BSEL1	BSEL0	10 BIT SAD	ALS	ES0	BC2	BC1	BC0	0016
DB ₁₆ I ² C clock control register (S2)	ACK	ACK BIT	FAST MODE	CCR4	CCR3	CCR2	CCR1	CCR0	0016
DC ₁₆ Serial I/O mode register (SM)		SM6	SM5	0	SM3	SM2	SM1	SM0	0016
DD ₁₆ Serial I/O register (SIO)									?
				00)16				0016
JF 16				00)16				0016

Fig. 2.3.3 Memory map of SFR (special function register) (1)

		<bit< th=""><th>allo</th><th>catic</th><th>n></th><th></th><th></th><th></th><th></th><th><sta< th=""><th>ate im</th><th>medi</th><th>ately</th><th>after r</th><th>eset ></th><th></th></sta<></th></bit<>	allo	catic	n>					<sta< th=""><th>ate im</th><th>medi</th><th>ately</th><th>after r</th><th>eset ></th><th></th></sta<>	ate im	medi	ately	after r	eset >	
			•							0	· "∩	" imr	nedi	atelv	after	reset
			. } E	unct	ion b	oit					. Ŭ		nour	atory	antor	0000
		Name	: '							1	: "1	" imr	nedi	ately	after	reset
			: No	funct	tion b	it				?]: In	dete	rmin	ate ir	nmedi	iately
		0	: Fix	this	bit t	o "0'	,				af	ter re	eset			
		_	(dc	o not	writ	e "1")									
		1	: Fix (dc	this not	bit t writ	o "1' e "0"	")									
Addre	ss Register			I	Bit a	lloca	ition		L O		Stat	e imi	medi	iately	after	resę
FO16	Horizontal position register (HP)	b/		HR5	HR4	HR3	HR2	HR1	DU HR0	b/			00	16		<u> </u>
E116	Vertical position register 1 (CV1)		CV16	CV15	CV14	CV13	CV12	CV11	CV10	0	2	2	2	2	2 3	, , ,
E716	Vertical position register 2 (CV2)		CV26	CV25	CV24	CV23	CV22	CV21	CV20	0	2	2	2	2	$\frac{1}{2}$	2
E316					-		-	-		Ĕ	1 :	1	2	<u> : </u>	: [:	1 :
F 4 16	Character size register (CS)					CS21	CS20	CS11	CS10	0	Το	0	0	2	2 7	> ?
E516	Border selection register (MD)						MD20		MD10	0	0	0	0	0	2 0	$\frac{1}{2}$
E616	Color register 0 (CO0)	C007	CO06	C005	CO04	CO03	C002	CO01					00)16	•	·
E716	Color register 1 (CO1)	CO17	CO16	CO15	CO14	CO13	C012	C 011					00)16		
E816	Color register 2 (CO2)	CO27	CO26	CO25	CO24	CO23	C022	CO21	55	-			00)16		
E916	Color register 3 (CO3)	CO37	CO36	CO35	CO34	CO33	CO32	CO31		-			00)16		
EA16	CRT control register (CC)	CC7					CC2	CC1	CC0				00)16		
EB16)									7	>		
EC ₁₆	CRT port control register (CRTP)	OP7	OP6	OP5	OUT1	OUT2	R/G/B	VSYC	HSYC				.00)16		
ED ₁₆	CRT clock selection register (CK)	0	0	0	0	0	0	CK1	CK0				00)16		
EE16	A-D control register 1 (AD1)				ADM4	-	ADM2	ADM1	ADM0	0	0	0	2	0	0 0	
EF16	A-D control register 2 (AD2)			ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	-	-	-	00)16		
F016	Timer 1 (TM1)				1			LI					FF	16		
F1 16	Timer 2 (TM2)												07	7 16		
F216	Timer 3 (TM3)												FF	16		
F3 16	Timer 4 (TM4)												07	′ 16		
F4 16	Timer 12 mode register (T12M)			0	T12M4	T12M3	T12M2	T12M1	T12M0				00)16		
F516	Timer 34 mode register (T34M)			T34M5	T34M4	T34M3	T34M2	T34M1	T34M0				00)16		
F6 16	PWM5 register (PWM5)				1								?	?		
F7 16													7	>		
F8 16													?	>		
F9 16	Interrupt input polarity register (RE)	0		RE5	RE4	RE3	0	0		0	0	0	0	0	0 0) ?
FA16					00) 16							00)16		
FB16	CPU mode register (CPUM)	1	1	1	1	1	CM2	0	0	?	?	1	1	1	1 0) 0
FC16	Interrupt request register 1 (IREQ1)	IT3R	IICR	VSCR	CRTR	TM4R	TM3R	TM2R	TM1R				00	16		-
FD16	Interrupt request register 2 (IREQ2)	0			MSR		S1R	1T2R	1T1R				00)16		
FE16	Interrupt control register 1 (ICON1)	IT3E	IICE	VSCE	CRTE	TM4E	TM3E	TM2E	TM1E				00)16		

Fig. 2.3.4 Memory map of SFR (special function register) (2)

2.3 Memory assignment

2.3.1 Internal RAM

The static RAM is assigned.

The internal RAM is used as a stack area for subroutine calls and interrupts as well as for storing data. Both zero page and page 1 are used as a stack area. At reset, the page 1 is specified automatically. Ordinary, the stack pointer is set to the highest address in the internal RAM of the page 1 during initialization immediately after power on.

This stack pointer moves to lower addresses as the nesting depth increases; therefore, make sure the subroutine nesting and interrupt levels to prevent the stored data destroying necessary data in the RAM. When the stack page is specified "1," if the value of stack pointer exceeds address 0100₁₆, the value of stack page never change to "0" automatically. In this case, set the stack page value to "0" and set the stack pointer value to the highest address by software.

2.3.2 I/O ports (addresses 00C016 to 00CD16)

Addresses 00C0₁₆ to 00CD₁₆ are assigned to the ports, port direction registers and the port P3 output mode control register. There are 5 ports: P0, P1, P2, P3 and P5. Ports P0, P1 and P2 are the 8-bit programmable I/O ports. Port P3 consists of 5 bits. The low-order 3 bits (P3₀-P3₂) are the programmable I/O ports, and the high-order 2 bits (P3₃ and P3₄) are the input ports.

For I/O ports P0, P1, P2 and P3₀–P3₂, input or output can be specified in bit units by setting the relevant values to each port direction register.

To specify port bits as output pins, write "1" to the corresponding bit of the port direction register.

Conversely, write "0" to the corresponding bit to specify as an input pin.

For example, to use the even numbered bits of port P2 as output ports and the odd numbered bits as input ports, write "55₁₆ (01010101₂)" to address 00C5₁₆ (the port P2 direction register) at initialization.

Although Port P5 is an output port, it can be specified as the CRT output pins (R, G, B, OUT1) or as general-purpose port (P5₂–P5₅) by setting each bit in the port P5 direction register.

When setting "0," it is used for the CRT output pins (R, G, B, OUT1), and when setting "1," it is used as general-purpose output ports ($P5_2-P5_5$).

Note: Each port direction register default is "input" (port P5 is "CRT output") immediately after reset release.

Fig. 2.3.6 I/O setting example of port

2.3 Memory assignment

2.3.3 DA registers (addresses 00CE16 and 00CF16)

The DA-H register is assigned to address 00CE₁₆, and the DA-L register is assigned to address 00CF₁₆. Both registers consist of 8 bits.

The DA-H register is used to set the high-order 8 bits of 14-bit PWM output data. The DA-L register is used to set the low-order 6 bits of 14-bit PWM output data (set to bits 0 to 5). Bits 7 is not used.

2.3.4 PWM registers (addresses 00D016 to 00D416 and 00F616)

The PWM0 to PWM4 registers are assigned to addresses 00D0₁₆ to 00D4₁₆ and PWM5 register is address 00F6₁₆. All registers consist of 8 bits.

These registers are used to set the output data corresponding to six 8-bit PWM (PWM0-PWM5).

2.3.5 PWM output control registers (addresses 00D516 and 00D616)

The PWM output control register 1 is assigned to address 00D5₁₆ and the PWM output control register 2 is assigned to address 00D6₁₆.

Both registers consist of 8 bits, and used to select the PWM count source etc. The high-order 3 bits and the low-order 2 bits of the PWM output control register 2 are not used.

2.3.6 Multi-master I²C-BUS related registers (addresses 00D7₁₆ to 00DB₁₆)

The I²C data shift register, the I²C address register, the I²C status register, I²C control register and the I²C clock control register are assigned to addresses 00D7₁₆, 00D8₁₆, 00D9₁₆, 00DA₁₆ and 00DB₁₆ respectively. All registers consist of 8 bits.

The I²C data shift register is a 8-bit shift register to store receive data and write transmit data.

The I²C address register consists of a 7-bit slave address and a read/write bit.

The I²C status register controls the I²C-BUS interface status. The low-order 4 bits are read-only bits and the high-order 4 bits can be read out and written to.

The I²C control register controls data communication format.

The I²C clock control register is used to set ACK control, SCL mode and SCL frequency.

2.3.7 Serial I/O related registers (addresses 00DC₁₆ and 00DD₁₆)

The serial I/O mode register is assigned to address 00DC₁₆ and the serial I/O register is assigned to address 00DD₁₆. Both registers consist of 8 bits.

The serial I/O mode register is used to select the synchronous clock and the serial I/O port function by its low-order 4 bits. Bit 5 selects the transfer direction, and bit 6 selects the serial data input pin. Bit 4 is set to "0." Bit 7 is not used.

The serial I/O register is used to write transfer data.

2.3.8 CRT display related registers (addresses 00E016 to 00EC16)

(1) Horizontal position register (address 00E016)

The horizontal position register is assigned to address 00E0₁₆. This register consists of 8 bits, and is used to specify the horizontal position of CRT display. Bits 7 and 6 are not used.

(2) Vertical display position registers (addresses 00E1₁₆ and 00E2₁₆)

The vertical display position register 1 is assigned to address 00E1₁₆ and the vertical display position register 2 is assigned to address 00E2₁₆. These registers are corresponded to blocks 1 and 2, and used to set the vertical position to start display. Bit 7 of each register is not used.

(3) Character size register (address 00E4₁₆)

The character size register is assigned to address 00E4₁₆. This register consists of 8 bits, and is used to specify one of the three sizes of display characters. Bits 4 to 7 are not used.

2.3 Memory assignment

(4) Border selection register (address 00E5₁₆)

The border selection register is assigned to address 00E5₁₆. This register consists of 8 bits, and is used to set the border for blocks 1 and 2 by using one bit each. Bits 1 and 3 to 7 are not used.

(5) Color registers (addresses 00E616 to 00E916)

Color registers 0 to 3 are assigned to addresses $00E6_{16}$ to $00E9_{16}$. All color registers consist of 8 bits, and are used to set character output, blank output and character background color by CRT output (R, G, B, OUT1). Bit 0 is not used.

(6) CRT control register (address 00EA₁₆)

The CRT control register is assigned to address 00EA₁₆. This register consists of 8 bits, and is used to set display on/off for each block. Bits 3 to 6 are not used.

(7) CRT port control register (address 00EC₁₆)

The CRT port control register is assigned to address 00EC₁₆. This register consists of 8 bits, and is used to set the input polarity (H_{SYNC} and V_{SYNC}) and the output polarity (R, G, B, OUT1 and OUT2).

2.3.9 A-D control registers (addresses 00EE16 and 00EF16)

The A-D control register 1 is assigned to address 00EE₁₆, the A-D control register 2 is assigned to address 00EF₁₆. Both registers consist of 8 bits

The A-D control register 1 is used to select analog input pins and hold the results of comparator operation. Bits 3 and 5 to 7 are not used.

The A-D control register 2 is used to set the internal analog voltage. Bits 6 and 7 are not used.

2.3.10 Timer registers (addresses 00F016 to 00F316)

The timer registers are assigned to addresses 00F0₁₆ to 00F3₁₆. Both the timer and timer latch are written in this area when writing, but only the timer is read when reading.

To write data to address 00F1₁₆, for example, the data are stored to the timer 2 latch and timer 2. After that, the timer 2 contents are decremented by synchronizing with the clock pulse but the timer 2 latch contents are not changed. Accordingly, when reading data at address 00F1₁₆, the contents of timer 2 is read out at the time.

Fig. 2.3.7 Access to timer registers

2.3 Memory assignment

2.3.11 Timer mode registers (address 00F416 and 00F516)

The timer 12 mode register is assigned to address 00F4₁₆ and the timer 34 mode register is assigned to address 00F5₁₆. Both registers consist of 8 bits. They select the count source of timer and control the count stop bit. Bits 5 to 7 of the timer 12 mode register and bits 6, 7 of the timer 34 mode register are not used.

2.3.12 CPU mode register (address 00FB₁₆)

The CPU mode register is assigned to address 00FB₁₆. This register consists of 8 bits, and specifies the stack page. Set bits 0 and 1 are set to "0," and set bits 3 to 7 to "0."

2.3.13 Interrupt request registers (addresses 00FC16 and 00FD16)

The interrupt request register 1 is assigned to address 00FC16 and the interrupt request register 2 is assigned to address 00FD₁₆. Both registers consist of 8 bits, and hold content of each interrupt request bit. Bits 3 and 5 to 7 of the interrupt request register 2 are not used.

2.3.14 Interrupt control registers (addresses 00FE₁₆ and 00FF₁₆)

The interrupt control register 1 is assigned to address 00FE₁₆ and the interrupt control register 2 is assigned to address 00FF₁₆. Both registers consist of 8 bits, and sets enable/disable of interrupts. Bits 7 to 5 and 3 of the interrupt control register 2 are not used.

2.3.15 2 page register (addresses 0217₁₆ to 021B₁₆) (only M37221M8-XXXSP and M37221MA-XXXSP)

- (1) ROM correction addresses (address 0217₁₆ to 021A₁₆) Addresses 0217₁₆ to 021A₁₆ are assigned to ROM correction address. The ROM data addresses to be corrected are set to the ROM correction addresses.
- (2) ROM correction enable register (address 021B₁₆) The ROM correction enable register is assigned to address 021B₁₆. This register consist of 8 bits, and controls the ROM correction function. Bits 2 to 7 are not used.

2.3.16 CRT display RAM (addresses 060016 to 06B716)

The display RAM is used to specify the character to be displayed on the CRT and its color. Two addresses are used for one character: one address (8 bits) to specify each character code and the other (8 bits) to specify the color of the character.

2.3.17 ROM (addresses A000₁₆ to FFF₁₆)

The mask ROM is assigned.

In this internal ROM, addresses FFDE₁₆, FFDF₁₆, FFE4₁₆, FFF5₁₆, and FFF8₁₆ to FFFF₁₆ are assigned to vector area for reset and for interrupts. A vector jump destination storage address (16 bits) are stored in 2 addresses by the 1 interrupt source.

2.3.18 CRT display ROM (addresses 1000016 to 11FFF16)

The display ROM stores (masks) character patterns of each character to be displayed on the CRT. Although one character consists of 16 (vertical) \times 12 (horizontal) dots, it is divided into a 16 \times 8 dot and a 16 \times 4 dot pattern, with each pattern stored in one address. In other words, two addresses (16 bits) are used for one character. The ROM can store up to 256 kinds of characters.

2.4 Input/Output pins

2.4 Input/Output pins

The M37221M6-XXXSP/FP has 33 programable ports (I/O ports, input ports, output ports). The double-function ports function as ports and as pins for internal peripheral devices.

M37220M3-XXXSP/FP Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

Double-function ports
 P00-P07, P10-P17, P20-P24, P30, P31

 Input ports>
 P33, P34

 Output ports>
 P52-P55
 I/O port-only ports

2.4.1 Programmable ports

(1) Port P0

Port P0 is an 8-bit input/output port. This is an N-channel open drain output. Port P0 is assigned to memory at address 00C0₁₆ on zero page.

AR

Port P0 has the direction register (at address 00C116 on zero page), so that it is possible to program each bit whether the port is used for input or output. The pins of which the direction register is programmed to "0" are set for input; when programmed to "1", the pins are set for output.

When pins are programmed as output pins, the output data are written into the port latch and then output. When reading data from the output pins, the output pin level is not read but the port latch data is read. This allows a previously-output value to be read correctly even if the output LOW voltage has risen, for example, because a light emitting diode was directly driven.

The input pins float, so the values of the pins can be read. When writing data into the input pin, it is written only into the port latch, while the pin remains floating.

Ports $P0_0-P0_5$ are also used as PWM output pins PWM0-PWM5 respectively. Port $P0_6$ is also used as external interrupt pin INT2 and analog input pin A-D4. The $P0_7$ pin is also used as external interrupt input pin INT1. When external interrupts INT1 and INT2 are enabled, an interrupt is processed according to transition in the level on these pins.

Ports PO_6 and PO_7 have the schmit characteristics when they are used as INT input pins. In this case, set these pins for input by the port P0 direction register.

2.4 Input/Output pins

(2) Port P1

Port P1 is an 8-bit I/O port. The output structure is CMOS output, however, only when ports P11-P14 are used as multi-master I²C-BUS interface, the output structure is N-channel open-drain output. Port P1 has basically the same function as port P0.

Port P1₀ is also used as CRT output pin OUT2. Pin OUT2 is a CRT output pin. When setting "1" to bit 7 of the CRT control register, the pin functions as CRT output pin, when setting "0," the pin functions as a general-purpose I/O port.

Ports P11-P14 are used as SCL1, SCL2, SDA1 and SDA2 respectively.

Port P1₅ is also used as external interrupt input pin INT3 and analog input pin A-D1.

Ports P16 and P17 are also used as analog input pins A-D2 and A-D3 respectively.

(3) Port P2

Port P2 is an 8-bit I/O port. The output structure is CMOS output, however, only when ports P2₀ and P21 are used as serial I/O pins, the output structure is N-channel open-drain output. Port P2 has basically the same function as port P0.

Port P2₀ is also used as serial I/O synchronous clock input/output pin S_{CLK}. Port P2₁ is also used as serial I/O data output pin Sout. Port P22 is also used as serial I/O data input pin SIN.

Port P2₃ is also used as external clock input pin TIM3. When the timer 3 count source is supplied form an external device (as set by the timer 34 mode register), the input signal to this pin is the timer 3 count source.

The port P24 is also used as external clock input pin TIM2. When the count source for timer 2 is Com.c supplied form an external device (as set by the timer 12 mode register), the input signal to this pin is the timer 2 count source.

Ports P25–P27 has only I/O port function.

(4) Port P3

Ports P3₀–P3₂ are 3-bit I/O ports, ports P3₃ and P3₄ are a 2-bit input port. For the output structure of ports P3o and P31, either CMOS output or N-channel open-drain output structure can be selected by bit 0 or 1 of the port P3 output mode control register (address 00CD16). When "1," N-channel opendrain output structure is selected; when "0," CMOS output structure is selected.

Port P3₂ has only I/O port function. The output structure is N-channel open-drain output. Port P3₂ has basically the same function as port P0.

Ports P3₀ and P3₁ are also used as analog input pins A-D5 and A-D6 respectively.

Ports P3₃ and P3₄ are also used as CRT display clock input pins OSC1 and OSC2 respectively. Pin OSC1 is a clock input for CRT display, pin OSC2 is a clock output for CRT display. The output structure of pin OSC2 is CMOS output.

(5) Port P5

Ports P5₂-P5₅ are 4-bit output ports. The output structure is CMOS output. Ports P5₂-P5₅ are also used as CRT output pins R, G, B, OUT1 respectively.

Pins R, G, B, and OUT1 are CRT output pins. When setting each bit of the port P5 direction register to "0," the pins function as CRT output pins; when setting to "1," the pins function as general-purpose output ports. The output structure of CRT output pin is CMOS output structure.

2.4 Input/Output pins

Table 2.4.1 List of programmable port functions

Ports	Functions except port	Name
P00-P05	PWM0–PWM5	PWM output pin
P06	INT2/A-D4	External interrupt input pin/Analog input pin
P07	INT1	External interrupt input pin
P10	OUT2	CRT output pin
P1 1	SCL1	Multi-master I ² C-BUS interface pin
P1 ₂	SCL2	Multi-master I ² C-BUS interface pin
P13	SDA1	Multi-master I ² C-BUS interface pin
P14	SDA2	Multi-master I ² C-BUS interface pin
P1 ₅	A-D1/INT3	Analog input pin/External interrupt pin
P16	A-D2	Analog input pin
P1 7	A-D3	Analog input pin
P20	Sclk	Serial I/O synchronous clock input/output pin
P2 1	Sout	Serial I/O data input /output pin
P2 ₂	SIN	Serial I/O data input pin
P23	TIM3	External clock input pin
P24	TIM2	External clock input pin
P25-P27	—	Function as only programmable I/O ports
P30	A-D5	Analog input pin
P31	A-D6	Analog input pin 📶 🥙
P32	—	Functions as only programmable I/O port.
P3₃	OSC1	CRT display clock input pin
P34	OSC2	CRT display clock output pin
P52	R	CRT output pin
P5₃	G	CRT output pin
P54	В	CRT output pin
P5₅	OUT1	CRT output pin

2.4.2 Dedicated pins

- (1) 14-bit PWM output (D-A) pin This is a 14-bit PWM signal output pin. This pin also can be used for 1-bit general-purpose output port. The output structure is CMOS output.
- (2) Vertical and horizontal synchronous signal input pins (VSYNC, HSYNC) These pins input the vertical and horizontal synchronous signals for CRT display.
- (3) Test input pin (CNVss) Connect this pin to Vss.

(4) Reset input pin (RESET)

This pin inputs reset signal. To reset the microcomputer, hold the $\overrightarrow{\text{RESET}}$ pin at a LOW level for 2 μ s or more. Reset is released when HIGH level is applied to the $\overrightarrow{\text{RESET}}$ pin. For details, refer to "2.15 Reset."

(5) Clock I/O pins (XIN, XOUT)

These pins are I/O pins of main clock $f(X_{IN})$. Since a microcomputer has on-chip clock oscillation circuit, set the oscillation frequency by connecting an external ceramic resonator or a quartz-crystal oscillator between pins X_{IN} and X_{OUT} .

When inputting an external clock, connect the external clock to the XIN pin and leave the XOUT pin open.

The output structure of Xour pin is CMOS output.

(6) Power source input pin (Vcc, Vss)

These pins supply the power source to a microcomputer. Apply voltage of 5 V \pm 10 % to pin V_{cc} and 0 V to pin V_{ss}.

2.4 Input/Output pins

2.4 Input/Output pins

2.5 Interrupts

2.5 Interrupts

Interrupts are used in the following cases.

- When there is a request to execute a higher priority routine than current processing routine.
- When it is necessary to process according to a certain timing.

The M37221M6-XXXSP/FP has 14 interrupt sources (including reset).

These are vector interrupts with a fixed priority sequence. Table 2.5.1 shows the interrupt sources, vector addresses and the interrupt priority sequence.

M37220M3-XXXSP/FP

Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

Duinuit		Vector a	ddresses	Describe
Priority	Interrupt sources	High-order byte	Low-order byte	Remarks
1	Reset (Note)	FFFF ₁₆	FFFE ₁₆	Non-maskable
2	CRT interrupt	FFFD ₁₆	FFFC ₁₆	
3	INT2 interrupt	FFFB ₁₆	FFFA ₁₆	Active edge selectable
4	INT1 interrupt	FFF9 ₁₆	FFF8 ₁₆	Active edge selectable
5	Timer 4 interrupt	FFF5 ₁₆	FFF4 ₁₆	
6	f(X _{IN})/4096 interrupt	FFF3 ₁₆	FFF2 ₁₆	
7	Vsync interrupt	FFF1 ₁₆	FFF016	Active edge selectable
8	Timer 3 interrupt	FFEF ₁₆	SFFEE16	
9	Timer 2 interrupt	FFED ₁₆	FFEC ₁₆	
10	Timer 1 interrupt	FFEB ₁₆	FFEA ₁₆	
11	Serial I/O interrupt	FFE9 ₁₆	FFE816	
12	Multi-master I ² C-BUS interface interrupt	FFE7 ₁₆	FFE616	
13	INT3 interrupt	FFE5 ₁₆	FFE4 ₁₆	Active edge selectable
14	BRK instruction interrupt	FFDF ₁₆	FFDE ₁₆	Non-maskable (software interrupt)

	Table	2.5.1	Interrupt	sources.	vector	addresses	and	priority
--	-------	-------	-----------	----------	--------	-----------	-----	----------

Note: Reset are included in the table because it operates in the same way as interrupts.

These 14-source, 14-vector interrupts have the priority sequence as shown in Table 2.5.1 (reset has a higher priority than interrupts).

When two or more interrupt requests occur at the same sampling point, the interrupt with the higher priority (in order of 1 to 14) is received. This priority sequence is determined by hardware, but priority processing is possible to be varied by software, by using the interrupt enable bit and the interrupt disable flag.

2.5.1 Interrupt sources

The following explains interrupt sources, in order of priority (except reset).

(1) CRT interrupt

When displaying a character block with the CRT display function, the CRT interrupt request occurs at the completion of the display.

(2) INT2 interrupt

An INT2 interrupt request is generated by detecting a level transition on pin INT2 (external interrupt input).

Detecting either positive polarity (LOW to HIGH transition) or negative polarity (HIGH to LOW transition) is set with RE4 (the interrupt input polarity register: bit 4 at address 00F9₁₆). When RE4 is set to "0," a positive polarity is detected; when RE4 is set to "1," a negative polarity is detected.

The INT2 pin is also used for port P0₆ and pin A-D4. An INT2 interrupt by a level transition on the pin may cause software runaway. Therefore, when this pin is used as port P0₆, disable an INT2 interrupt by using an interrupt enable bit and the interrupt disable flag (I).

(3) INT1 interrupt

An INT1 interrupt request is generated by detecting a level transition on pin INT1 (external interrupt input).

Detecting either positive polarity (LOW to HIGH transition) or negative polarity (HIGH to LOW transition) to be detected is set with RE3 (the interrupt input polarity register: bit 3 at address 00F9₁₆). When RE3 is set to "0," a positive polarity is detected; when RE3 is set to "1," a negative polarity is detected.

Pin INT1 is also used for port P07. An INT1 interrupt by a level transition on the pin may cause software runaway. Therefore, when this pin is used as port P07, disable the INT1 interrupt by using an interrupt enable bit and interrupt disable flag (I).

(4) Timer 4 interrupt

Timer 4 value is counted down. Timer 4 interrupt request occurs when the count source next to "00₁₆" is input.

(5) f(X_{IN})/4096 interrupt

A $f(X_{IN})/4096$ interrupt request occurs for a $f(X_{IN})/4096$ period.

This interrupt is valid when the PWM count source is supplied (when bit 0 of PWM output control register 1 is "0").

(6) VSYNC interrupt

A V_{SYNC} interrupt request occurs synchronized with the vertical synchronous signal which is input to pin V_{SYNC} .

When the V_{SYNC} input polarity is positive (the CRT port control register: bit 1 at address $00EC_{16}$ is "0"), an interrupt request is generated by a rising edge (LOW to HIGH transition) of the V_{SYNC} input; conversely, when the polarity is negative, an interrupt request is generated by a falling edge.

Fig. 2.5.1 VSYNC interrupt generation timing

2.5 Interrupts

(7) Timer 3 interrupt

Timer 3 value is counted down. Timer 3 interrupt request occurs when the count source next to "00₁₆" is input.

(8) Timer 2 interrupt

Timer 2 value is counted down. Timer 2 interrupt request occurs when a count source next to " 00_{16} " is input

(9) Timer 1 interrupt

Timer 1 value is counted down. Timer 1 interrupt request occurs when a count source next to " 00_{16} " is input.

(10) Serial I/O interrupt

The serial I/O interrupt request is generated by detecting a rising edge of the eighth serial transfer clock after writing to the serial I/O register.

(11) Multi-master I²C-BUS interface interrupt

A multi-master interrupt request occurs synchronized with a falling edge serial clock (SCL) every completion of 1-byte data communication.

(12) INT3 interrupt

An INT3 interrupt request is generated by detecting a transition in the level on pin INT3 (external interrupt input).

Detecting either positive polarity (LOW to HIGH transition) or negative polarity (HIGH to LOW transition) to be detected is set with RE5 (the interrupt input polarity register: bit 5 at address 00F9₁₆). When RE5 is set to "0," a positive polarity is detected, when RE5 is set to "1," a negative polarity is detected.

Pin INT3 is also used for port P1₅ and pin A-D1. An INT3 interrupt by a level transition on the pin may cause software runaway. Therefore, when this pin is used as port P1₅, disable an INT3 interrupt by using an interrupt enable bit and interrupt disable flag (1).

(13) BRK instruction interrupt

This software interrupt has the least significant priority and generates an interrupt request is generated by executing when the **BRK** instruction. There is no corresponding interrupt enable bit and no influence by the interrupt disable flag (I).

2.5 Interrupts

2.5.2 Interrupt control

Each interrupt can be controlled with the interrupt request bit, the interrupt control bit, and the interrupt disable flag.

- - -

(1) Interrupt request bit

When an interrupt request occurs, the corresponding bit of the interrupt request register is set to "1." The interrupt request is held active until an interrupt is accepted or "0" is written to the relevant bit by software. The bit is automatically cleared to "0" simultaneously when the interrupt is accepted. Interrupt request bits are cleared to "0" (to clear the interrupt request) by software but are not set to "1" (to generate the interrupt request) by software.

Each interrupt request bit is assigned to interrupt request registers 1 and 2 (addresses $00FC_{16}$ and $00FD_{16}$).

(2) Interrupt enable bit

Interrupt enable bits control the acceptance of each interrupt.

When the interrupt enable bit is cleared to "0" (to disable an interrupt), the interrupt cannot be accepted. Conversely, when the interrupt enable bit is set to "1" (to enable an interrupt), the interrupt is accepted. However, if the interrupt disable flag is set to "1," the interrupt cannot be accepted even when the interrupt enable bit is set to "1."

Each interrupt enable bit is assigned to interrupt control registers 1 and 2 (addresses $00FE_{16}$ and $00FF_{16}$).

(3) Interrupt disable flag (I)

The interrupt disable flag (I) is assigned to bit 2 of the processor status register. When the interrupt disable flag is set to "1," all interrupts except the **BRK** instruction interrupt are disabled; when the flag is cleared to "0," interrupts are enabled. However, if the interrupt disable flag is cleared to "0," the interrupt cannot be accepted even when the interrupt enable bit is "0."

2.5 Interrupts

2.5 Interrupts

Interrupt Control Regist	er 2	<u>.</u>				
b7 b6 b5 b4 b3 b2 b1 b0	In	terrupt control register 2 (I	CON2) [Address 00FF ⁻	16]		
	В	Name	Functions	After reset	R	W
	0	INT1 interrupt enable bit (IT1E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	1	INT2 interrupt enable bit (IT2E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
· · · · · · · · · · · · · · · · · · ·	2	Serial I/O interrupt enable bit (S1E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	3	Fix this bit to "0."		0	R	W
	4	f(XIN)/4096 interrupt enable bit (MSE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
· · · · · · · · · · · · · · · · · · ·	5 to 7	Fix these bits to "0."		0	R	W

Fig. 2.5.6 Interrupt control register 2 (address 00FF₁₆)

2.5 Interrupts

Г

Int	errupt input polarity register(RE) [Address 00F9 ₁₆]	i	.		1
b	Name	Functions	After reset	R	W	
0	Nothing is assigned. This bi When this bit is read out, the	t is a write disable bit. e value is "0."	Indeterminate	R		
 1, 2	Fix these bits to "0."		0	R	W	
 3	INT1 polarity switch bit (RE3)	0 : Positive polarity 1 : Negative polarity	0	R	W	
4	INT2 polarity switch bit (RE4)	0 : Positive polarity 1 : Negative polarity	0	R	W	
 5	INT3 polarity switch bit (RE5)	0 : Positive polarity 1 : Negative polarity	0	R	W	
 6	Nothing is assigned. This bi When this bit is read out, the	t is a write disable bit. e value is "0."	0	R	-	
 7	Fix this bit to "0."		0	R	W	

Fig. 2.5.7 Interrupt input polatiry register (address 00F9₁₆)

h7 h6 h5 h4 h2 h2 h4 h	0				
	ء آ	RT port control register(CRTF) [Address 00FC 16]		
) [,		
	b	Name	Functions	After reset	RW
	0	HSYNC input polarity switch bit (HSYC)	0 : Positive polarity 1 : Negative polarity	0	RW
	- 1	VSYNC input polarity switch bit (VSYC)	0 : Positive polarity 1 : Negative polarity	0	RW
	2	R, G, B output polarity switch bit (R, G, B)	0 : Positive polarity 1 : Negative polarity	0	RW
	3	OUT2 output polarity switch bit (OUT2)	0 : Positive polarity 1 : Negative polarity	0	RW
	4	OUT1 output polarity switch bit (OUT1)	0 : Positive polarity 1 : Negative polarity	0	RW
	5	R signal output switch bit (OP5)	0 : R signal output 1 : MUTE signal output	0	RW
	6	G signal output switch bit (OP6)	0 : G signal output 1 : MUTE signal output	0	RW
	7	B signal output switch bit (OP7)	0 : B signal output 1 : MUTE signal output	0	RW

Fig. 2.5.8 CRT port control register (address 00EC₁₆)

2.5 Interrupts

Interrupt request bits are set to "1" by occurrence of an interrupt request, even if the interrupt is disabled. Therefore, to disable interrupt processing, clear the interrupt request bit to "0" immediately before the interrupt disable state is cancelled (interrupt enable state, i.e., the interrupt enable bit = "1" and the interrupt disable flag = "0").

Fig. 2.5.10 Interrupt vector table

2.6 Timers

2.6 Timers

M37221M6-XXXSP/FP has four 8-bit timers with reload latch. Figure 2.6.1 shows the timer block diagram.

Fig. 2.6.1 Timer 1, timer 2, timer 3, and timer 4 block diagram

2.6.1 Timer functions

There are four timers; Timer 1, Timer 2, Timer 3, Timer 4 and each timer has an 8-bit reload latch. All timers are the count-down type, and when the timer latch value is "n", the divide ratio is 1/(n+1)("n" = 0to 255). When the valve "n" is written to reload latch, is also set "n" to its timer, simultaneously.

Timer value is counted down each rising edge of count source. The timer overflows at the count next pulse, after the count value reaches "0016," and the interrupt request occurs. At the same time of timer overflow, the reload latch value "n" is set (reload) to timer, and timer continues to count down. The divide ratio is 1/(n+1). Make sure that set "n" in the range "00₁₆" to "FF₁₆."

Count source	
Timer	$\frac{1}{10000000000000000000000000000000000$
Overflow signal	Writing Value
	Interrupt request
	- D-
Fig. 262 Timer overflow timing	J. Th

ig. 2.6.2 Timer overflow timing

(1) Timer 1

Timer 1 Timer 1 can select one of the following count sources: • $f(X_{IN})/16$ • $f(X_{IN})/4096$ (This is a clock by $f(X_{IN})/4006$ The court (This is a clock by $f(X_{IN})/4096$ interrupt and is valid only when PWM count source is supplied.) The count source of timer 1 is selected by setting bit 0 of the timer 12 mode register (address 00F4₁₆).

Timer 1 interrupt request occurs at timer 1 overflow.

(2) Timer 2

Timer 2 can select one of the following count sources:

- f(X_{IN})/16
- Timer 1 overflow signal
- External clock from pin P24/TIM2

The count source of timer 2 is selected by setting bits 4 and 1 of the timer 12 mode register (address 00F4₁₆). When timer 1 overflow signal is a count source for timer 2, timer 1 functions as an 8-bit prescaler.

Timer 2 interrupt request occurs at timer 2 overflow.

2.6 Timers

b7b6b5b4b3b2b1b0	Ti	mer 12 mode register (T	12M) [Address 00F416]			
	В	Name	Functions	After reset	R	W
	0	Timer 1 count source selection bit (T12M0)	0: f(XIN)/16 1: f(XIN)/4096	0	R	W
· · · · · · · · · · · · · · · · · · ·	1	Timer 2 count source selection bit (T12M1)	0: Internal clock 1: External clock from P24/TIM2 pin	0	R	W
	2	Timer 1 count stop bit (T12M2)	0: Count start 1: Count stop	0	R	W
	3	Timer 2 count stop bit (T12M3)	0: Count start 1: Count stop	0	R	W
	4	Timer 2 internal count source selection bit (T12M4)	0: f(XIN)/16 1: Timer 1 overflow	0	R	W
	5	Fix this bit to "0."	A	0	R	W
	6,7	Nothing is assigned. Th bits. When these bits ar	ese bits are write disable e read out, the values are	0	R	

Fig. 2.6.3 Timer 12 mode register (address 00F416)

(3) Timer 3

Timer 3 can select one of the following count sources:

- f(X_{IN})/16
- External clock from pin Hsync
- External clock from pin P2₃/TIM3

The count source of timer 3 is selected by setting bits 5 and 0 of the timer 34 mode register (address $00F5_{16}$)

Timer 3 interrupt request occurs at timer 3 overflow.

(4) Timer 4

Timer 4 can select one of the following count sources:

- f(X_{IN})/16
- f(X_{IN})/2
- Timer 3 overflow signal

The count source of timer 3 is selected by setting bits 4 and 1 of the timer 34 mode register (address 00F5₁₆). When timer 3 overflow signal is a count source for timer 4, timer 3 functions as an 8-bit prescaler.

Timer 4 interrupt request occurs at timer 4 overflow.

2.6 Timers

b7b6b5b4b	3 b2 b1 b0	Ti	mer 34 mode register (T3	34M) [Address 00F516]			
		В	Name	Functions	After reset	R	W
		0	Timer 3 count source selection bit (T34M0)	0: f(XIN)/16 1: External clock	0	R	W
		1	Timer 4 internal count source selection bit (T34M1)	0: Timer 3 overflow 1: f(XIN)/16	0	R	W
		2	Timer 3 count stop bit (T34M2)	0: Count start 1: Count stop	0	R	W
		3	Timer 4 count stop bit (T34M3)	0: Count start 1: Count stop	0	R	W
		4	Timer 4 count source selection bit (T34M4)	0: Internal clock 1: f(XIN)/2	0	R	W
		5	Timer 3 external count source selection bit (T34M5)	0: External clock from P23/TIM3 pin 1: External clock from H SYNC pin	0	R	W
		6,7	Nothing is assigned. Th bits. When these bits ar "0."	ese bits are write disable e read out, the values are	0	R	

.

Fig. 2.6.4 Timer 34 mode register (address 00F516)

Table 2.6.1 Memory map of timer-related register
--

Addresses	Contents
00F0 ₁₆	Timer 1 (TM1)
00F1 ₁₆	Timer 2 (TM2)
00F2 ₁₆	Timer 3 (TM3)
00F3 ₁₆	Timer 4 (TM4)
00F4 ₁₆	Timer 12 mode register (T12M)
00F516	Timer 34 mode register (T34M)

2.6 Timers

Fig. 2.6.5 Example of timer system

2.6 Timers

2.6.2 Timer 3 and timer 4 when reset and when executing the STP instruction

Timers 3 and 4 start counting down immediately after reset status is released or stop mode is released, and CPU starts operating by supplying the internal clock ϕ at overflow of these timers. Therefore, the program can start under a stable clock.

(1) When reset

When reset, Timers 3 and 4 are automatically set by hardware as shown in Table 2.6.2, and immediately start counting down. The counting is continued, then, Timer 4 overflows and the internal clock ϕ is supplied (the internal reset is released). The program can start again.

(2) When executing the STP instruction

Immediately after the **STP** instruction is executed, Timers 3 and 4 are automatically set as shown in Table 2.6.2 as in the case of reset and placed in the stop mode. When the stop mode is entered, the processor stops supplying the internal clock ϕ , and contents of Timers 3 and 4 are retained. When the stop mode is released by reset input or external interrupt input, the processor simultaneously supplies f(X_{IN}), and Timers 3 and 4 start counting down.

The counting is continued, then, when timer 4 overflows and the internal clock ϕ is supplied. The program can start again.

Table 2.6.2 Contents of timers 3 and 4 when reset or when executing STP instruction

Contents	Timer 3	Timer 4
Value	FF16	0716
Count source	f(X _{IN})/16 (except when executing the STP instructions)	Timer 3 overflow signal

Note: When executing the **STP** instruction, f(XIN)/16 is not automatically selected as the timer 3 count source. Accordingly, set bit 0 of the timer 34 mode register (address 00F516) to "0" before executing the **STP** instruction select (f(XIN)/16 is selected as the timer 3 count source).

2.7 Serial I/O

2.7 Serial I/O

The M37221M6-XXXSP/FP has on-chip clock synchronous serial I/O which can receive and transmit 8-bit data serially.

Because pin S_{OUT} also can be used as the serial I/O data input pin, it can transmit and receive with only one signal line.

2.7.1 Structure of serial I/O

- Serial I/O consists of
- Serial I/O register
- Serial I/O mode register
- Serial I/O counter
- Clock source generating counter

The serial I/O register is the register which 8-bit transfer data is written into. Each function of serial I/O can be controlled by setting appropriate values to the serial I/O mode register.

Serial I/O transfers data to and from the internal CPU via the data bus, and it transfers data to and from external devices via ports $P2_2-P2_0$. When using the serial I/O, ports $P2_2-P2_0$ have the following functions: • P2₀: Serial I/O synchronous clock input/output pin (S_{CLK})

- P20. Serial I/O synchronous clock input/output pin (
 P2 Serial I/O data input/output pin (
- P21: Serial I/O data input/output pin (Sout)
- P2₂: Serial I/O data input pin (S_{IN})

The functions of these ports can be selected by the serial I/O mode register.

The transfer clock that determines the serial data transfer rate can selected 4 kinds of clock sources with the serial I/O mode register.

Figure 2.7.1 shows the serial I/O block diagram, Figure 2.7.2 shows the serial I/O mode register.

2.7 Serial I/O

2.7.2 Serial I/O register (address 00DD16)

The serial I/O register is serial-parallel conversion register used for data transfer. This register consists of 8-bit and can be used as both transmit and receive register.

Serial I/O register is assigned to address 00DD₁₆.

Although data transfer is performed bit by bit, it is possible to specify whether the data is transferred beginning with most-significant-bit (MSB) or least-significant-bit (LSB) by using bit 5 of the serial I/O mode register.

(1) When bit 5 of the serial I/O mode register is "0"

- Receive: Data is received bit by bit beginning with the MSB (bit 7) of the serial I/O register.
- Transmit: Data is transmitted bit by bit beginning with the LSB (bit 0) of the serial I/O register.

(2) When bit 5 of the serial I/O mode register is "1"

- Receive: Data is received bit by bit beginning with the LSB (bit 0) of the serial I/O register.
- Transmit: Data is transmitted bit by bit beginning with the MSB (bit 7) of the serial I/O register.

2.7.3 Clock source generating circuit

The clock source generating circuit can select oscillation frequency divided by 4, 16, 32, and 64 as the internal clock. Also, it can select an external clock (the external clock is selected immediately after reset). Bit 2 of the serial I/O mode register specifies internal clock or external clock. When bit 2 of the serial I/O mode register is set to "0," an external clock is 4. 4 15

selected, when "1," an internal clock is selected.

When selecting an internal clock, set the division of oscillation frequency by bits 0 and 1 of the serial I/O mode register.

- Oscillation frequency divided by 4: set both bits 1 and 0 to "0."
- Oscillation frequency divided by 16: set bit 1 = "0" and bit 0 = "1."
- Oscillation frequency divided by 32: set bit 1 = "1" and bit 0 = "0."
- Oscillation frequency divided by 64: set both bit 1 and 0 to 1.

Table 2.7.1 Clock source selecti

Sorial I/		Serial I/O mode register			
Genal I/	O CIUCK	Bit 2	Bit 1	Bit 0	
External clock		0	0 or 1 (Invalid)		
	f(X _{IN})/4		0	0	
Internal	f(XIN)/16	. 1	0	1	
clock	f(XIN)/32		1	0	
	f(XIN)/64		1	1	

The contents of bits 0 and 1 of the serial I/O mode register are invalid, when selecting an external clock.

2.7.4 Serial input/output common transmission/reception mode

Pin P21/Sour can also be used as the serial I/O data input pin when the serial input pin selection bit (bit 6 of the serial I/O mode register; address 00DC₁₆) is set to "1." (It is not necessary to set the corresponding bit of port P2 direction register to input mode.)

With this function, pin $P2_2/S_{IN}$ can also be used as general-purpose input port $P2_2$.

Fig. 2.7.3 Serial input/output common transfer mode block diagram

2.7.5 Serial I/O data receive method (when an internal clock is selected)

(1) Initialization

First, set the serial I/O mode register (address 00DC₁₆) as follows.

- (1) Select the synchronous clock (SM2 = "1," SM1, SM0).
- ② Set P2₀ as pin S_{CLK} (SM3 = "1"). Pin P2₁/S_{OUT} is not used when receiving serial data. However, since the serial I/O port selection bit (SM3) is also used for setting pin S_{OUT}, port P2₁ is automatically set as pin S_{OUT} and loses its general-purpose I/O port function.
- ③ Select the serial input pin by the serial input pin selection bit (SM6). When SM6 = "0," signal is input from pin P2₂/S_{IN}; when SM6 = "1," signal is input from pin P2₁/S_{OUT}. When pin P2₂/S_{IN} is a input pin, set the port P2 direction register to input mode ("0"). For pins P2₀/S_{CLK} and P2₁/S_{OUT}, the corresponding bits of the port P2 direction register are automatically set by setting the serial I/O mode register.

(2) Receive enable state

After the above setting have been made, write " FF_{16} " to the serial I/O register (address 00DD₁₆). The serial I/O counter is then set to "07₁₆" during the write cycle and receive is enabled.

(3) Receive operation

The data from the serial I/O data input pins (S_{OUT} or S_{IN}) is received one bit at a time into the serial I/O register in synchronization with rising edges of the transfer clock.

Receive operation is performed according to bit 5 (SM5) of the serial I/O mode register:

- ① When SM5 is set to "0," data is received from MSB (bit 7) of the register and shifted to the right (to low-order bit) every time new data is received.
- ⁽²⁾ When SM5 is set to "1," data is received from LSB (bit 0) of the register and shifted to the left (to high-order bit) every time new data is received.

When all 8-bit data have been received, the serial I/O interrupt request bit (bit 2) of the interrupt request register 2 (address 00FD₁₆) is set to "1."

Fig. 2.7.4 Serial I/O register when receiving (when SM5 = "0")

2.7.6 Serial I/O data transmit method (when an external clock is selected)

(1) Initialization

First, set the serial I/O mode register (address 00DC₁₆) as follows.

- ① Select the synchronous clock (SM2 = "0").
- ② Set P2₀ as pin S_{CLK} (SM3 = "1"). Since the serial I/O port selection bit (SM3) is also used for the setting pin S_{OUT}, port P2₁ is automatically becomes the S_{OUT} pin.

Note: It is not necessary to set pin P2₂/S_{IN} as pin S_{IN} when transmitting. It can be used as generalpurpose input pin.

(2) Transmit enable state

When transmit data are written to the serial I/O register, the serial I/O counter is set to " 07_{16} " and transmit is enabled.

(3) Transmit operation

When transmit is enabled (the serial I/O counter value = " 07_{16} "), simultaneously, the data of the serial I/O register is transmitted from pin P2₁/S_{OUT} in synchronization with a falling edge of the transfer clock.

Transmission is performed according to bit 5 (SM5) of the serial I/O mode register:

- ① When SM5 is set to "0," data is transmitted from LSB (bit 0) of the register and shifted to the right (to low-order bit) every time new data is transmitted.
- ⁽²⁾ When SM5 is set to "1," data is transmitted from MSB (bit 7) of the register and shifted to the left (to high-order bit) every time new data is transmitted.

When all 8-bit data have been transmitted, the serial I/O interrupt request bit (bit 2) of the interrupt request prequest register 2 (address 00FD₁₆) is set to "1."

Pin P21/Sour will be in after transmit operation has been completed.

Note: On programming, note that the serial I/O counter is set even by writing to the serial I/O register with bit management instructions, such as SEB and CLB.

Fig. 2.7.5 Serial I/O register when transmitting (when SM5 = "0")

2.7.7 Note when selecting a synchronous clock

Regardless of either an internal or external clock is selected as the serial I/O synchronous clock source, the interrupt request bit is set to "1" after 8 transfer clocks.

However, the serial I/O register contents will continue to be shifted as long as the transfer clock is being input to the serial I/O circuit, so it is necessary to stop after 8 transfer clocks.

When an internal clock is selected, the transfer clock stops automatically after 8 clocks.

When an external clock is selected, control the transfer clock externally. Moreover, use an external clock of 1 MHz or less with a duty cycle of 50 %.

When selecting an external clock as the synchronizing clock, write transmit data to the serial I/O register transfer clock input level is HIGH

Figure 2.7.6 shows the serial I/O timing.

Fig. 2.7.6 Timing diagram of serial I/O
2.7 Serial I/O

The transmit side in Figure 2.7.7, $P2_1$ is set as the serial I/O data output pin and $P2_0$ is set as the serial I/O synchronous clock output pin by the initialization program.

The receive side, P2₁ is set as the serial I/O data input pin and P2₀ is used for the serial I/O synchronous clock (external clock) input pin by the initialization program.

Figure 2.7.8 shows the serial data transmit/receive processing sequence using the above structure.

Fig. 2.7.7 Connection example for serial I/O transmit/receive

	Tra	insmit side		Rec	ceive side
LDM	#\$0C, \$DC	; Set serial I/O mode register.	LDM	#\$48, \$DC	; Set serial I/O mode
CLB	2, \$FD	; Reset serial I/O interrupt			register.
		request bit.	CLB	2, \$FD	; Reset serial I/O interrupt
SEB	2, \$FF	; Set the serial I/O interrupt			request bit.
	, .	enable bit to "1."	SEB	2, \$FF	; Set serial I/O interrupt
				, .	enable bit to "1."
LDM	#DATA, \$DD	; Write transfer data to serial	▼LDM	#\$FF, \$DD	; Write dummy data to
		I/O register.		• • •	serial I/O register.
		5			
			11		
A a a a					
As a re	esult of the abo	ove processing 1-byte data is tr	ansterred	from the tran	smit side to the receive side.

As a result of the above processing 1-byte data is transferred from the transmit side to the receive side. When the transmit operation is completed, interrupts occur on both sides, so that completion of the data transfer can be reported.

After that, repeating the processing after the symbol (\mathbf{v}) can transmit/receive more data.

Fig. 2.7.8 Serial data transmit/receive processing sequence

2.8 Multi-master I²C-BUS interface

2.8 Multi-master I²C-BUS interface

The multi-master I²C-BUS interface is a serial communications circuit, conforming to the Philips I²C-BUS data transfer format. This interface, offering both an arbitration lost detection and a synchronous functions, is useful for the multi-master serial communications.

Figure 2.8.1 shows a block diagram of the multi-master I^2C -BUS interface and Table 2.8.1 shows multi-master I^2C -BUS interface functions.

The M37220M3-XXSP/FP does not have this function.

Table 2.6.1 Multi-Mastel 1 C-B03	
Item	Function
	In conformity with Philips I ² C-BUS standard:
	10-bit addressing format
Format	7-bit addressing format
	High-speed clock mode
	Standard clock mode
	In conformity with Philips I ² C-BUS standard:
	Master transmission
Communication mode	Master reception
	Slave transmission
	Slave reception
SCL clock frequency	16.1 kHz to 400 kHz (at $\phi = 4$ MHz)

Table 2.8.1 Multi-master I²C-BUS interface functions

 ϕ : System clock = f(X_{IN})/2

Note: We are not responsible for any third party's infringement of patent rights or other rights attributable to the use of the control function (bits 6 and 7 of the I²C control register at address 00DA₁₆) for connections between the I²C-BUS interface and ports (SCL1, SCL2, SDA1, SDA2).

2.8 Multi-master I²C-BUS interface

Fig. 2.8.1 Block diagram of multi-masteer I²C-BUS interface

2.8.1 Construction of multi-master I²C-BUS interface

The multi-master I²C-BUS interface consists of the following :

- I²C address register
- I²C data shift register
- I²C clock control register
- I²C control register
- I²C status register
- Other control circuits

The data transfer with the internal CPU is performed via data bus, the data transfer with an external device is performed via ports $P1_1-P1_4$. When using multi-master I²C-BUS interface, these ports $P1_1-P1_4$ are assigned to the following functions.

- P11: Multi-master I²C-BUS interface Synchronous clock input/output pin 1 (SCL1)
- P12: Multi-master I²C-BUS interface Synchronous clock input/output pin 2 (SCL2)
- P1₃: Multi-master I²C-BUS interface data input/output pin 1 (SDA1)
- P14: Multi-master I²C-BUS interface data input/output pin 2 (SDA2)

The shift clock to determine the transfer speed of serial data is selected by the I^2C clock control register (refer to "Figure 2.8.4").

A serial data and a serial clock is referred as "SDA," "SCL" respectively, hereafter.

2.8 Multi-master I²C-BUS interface

2.8.2 Multi-master I²C-BUS interface-related registers

(1) I²C data shift register (S0: address 00D7₁₆)

The I²C data shift register (S0 : address 00D7₁₆) is an 8-bit shift register to store receive data and write transmit data.

When transmit data is written into this register, it is transferred to the outside from bit 7 in synchronization with the SCL clock, and each time one-bit data is output, the data of this register are shifted one bit to the left. When data is received, it is input to this register from bit 0 in synchronization with the SCL clock, and each time one-bit data is input, the data of this register are shifted one bit to the left. The I²C data shift register is in a write enable status only when the ESO bit of the I²C control register (address 00DA₁₆) is "1." The bit counter is reset by a write instruction to the I²C data shift register. When both the ESO bit and the MST bit of the I²C status register (address 00F9₁₆) are "1," the SCL is output by a write instruction to the I²C data shift register. Reading data from the I²C data shift register is always enabled regardless of the ESO bit value.

Figure 2.8.2 shows the I²C data shift register.

Fig. 2.8.2 I²C data shift register

2.8 Multi-master I²C-BUS interface

(2) I²C address register (S0D: address 00D8₁₆)

The I^2C address register (address 00D8₁₆) consists of a 7-bit slave address and a read/write bit. In the addressing mode, the slave address written in this register is compared with the address data to be received immediately after the START condition are detected.

■ Bit 0: Read/write bit (RBW)

Not used when comparing addresses, in the 7-bit addressing mode. In the 10-bit addressing mode, the first address data to be received is compared with the contents (SAD6 to SAD0 + RBW) of the I^2C address register.

The RBW bit is cleared to "0" automatically when the stop condition is detected.

■ Bits 1 to 7: Slave address (SAD0–SAD6)

These bits store slave addresses. Regardless of the 7-bit addressing mode and the 10-bit addressing mode, the address data transmitted from the master is compared with the contents of these bits.

Figure 2.8.3 shows the I²C address register.

2.8 Multi-master I²C-BUS interface

(3) I²C clock control register (S2: address 00DB₁₆)

The I²C clock control register (address 00DB₁₆) is used to set ACK control, SCL mode and SCL frequency.

■ Bits 0 to 4: SCL frequency control bits (CCR0–CCR4)

These bits control the SCL frequency. Refer to "Table 2.8.4."

■ Bit 5: SCL mode specification bit (FAST MODE)

This bit specifies the SCL mode. When this bit is set to "0," the standard clock mode is set. When the bit is set to "1," the high-speed clock mode is set.

■ Bit 6: ACK bit (ACK BIT)

This bit sets the SDA status when an ACK clock* is generated. When this bit is set to "0," the ACK return mode is set and SDA goes to LOW at the occurrence of an ACK clock. When the bit is set to "1," the ACK non-return mode is set. The SDA is held in the HIGH status at the occurrence of an ACK clock.

However, when the slave address matches the address data in the reception of address data at ACK BIT = "0," the SDA is automatically made LOW (ACK is returned). If there is a mismatch between the slave address and the address data, the SDA is automatically made HIGH (ACK is not returned).

*ACK clock: Clock for acknowledgment

■ Bit 7: ACK clock bit (ACK)

Whier the state of This bit specifies a mode of acknowledgment which is an acknowledgment response of data transmission. When this bit is set to "0," the no ACK clock mode is set. In this case, no ACK clock occurs after data transmission. When the bit is set to "1," the ACK clock mode is set and the master generates an ACK clock upon completion of each 1-byte data transmission. The device for transmitting address data and control data releases the SDA at the occurrence of an ACK clock (make SDA HIGH) and receives the ACK bit generated by the data receiving device.

Figure 2.8.4 shows the I²C clock control register.

Note: Do not write data into the I²C clock control register during transmission. If data is written during transmission, the I²C clock generator is reset, so that data cannot be transmitted normally.

2.8 Multi-master I²C-BUS interface

Fig. 2.8.4 I²C clock control register

2.8 Multi-master I²C-BUS interface

(4) I²C Control Register (S1D: address 00DA₁₆)

The I²C control register (address 00DA₁₆) controls the data communication format.

■ Bits 0 to 2: Bit counter (BC0–BC2)

These bits decide the number of bits for the next 1-byte data to be transmitted. An interrupt request signal occurs immediately after the number of bits specified with these bits are transmitted. When a START condition is received, these bits become "000₂" and the address data is always transmitted and received in 8 bits.

■ Bit 3: I²C-BUS interface use enable bit (ESO)

This bit enables usage of the multi-master I²C-BUS interface. When this bit is set to "0," the use disable status is provided, so the SDA and the SCL become high-impedance. When the bit is set to "1," use of the interface is enabled.

When ESO = "0," the following is performed.

- PIN = "1," BB = "0" and AL = "0" are set (they are bits of the I^2C status register at address 00F8₁₆).
- Writing data to the I^2C data shift register (address 00D7₁₆) is disabled.

■ Bit 4: Data format selection bit (ALS)

This bit decides whether or not to recognize slave addresses. When this bit is set to "0," the addressing format is selected, so that address data is recognized. When a match is found between a slave address and address data as a result of comparison or when a general call (refer to "(5) I²C Status Register," bit 1) is received, transmission processing can be performed. When this bit is set to "1," the free data format is selected, so that slave addresses are not recognized.

■ Bit 5: Addressing format selection bit (10BIT SAD)

This bit selects a slave address specification format. When this bit is set to "0," the 7-bit addressing format is selected. In this case, only the high-order 7 bits (slave address) of the I²C address register (address 00D8₁₆) are compared with address data. When this bit is set to "1," the 10-bit addressing format is selected, all the bits of the I²C address register are compared with address data.

■ Bit 6 and 7: Connection control bits between I²C-BUS interface and ports (BSEL0, BSEL1) This bits controls the connection between SCL and ports or SDA and ports. When using the ports as multi-master I²C-BUS interface, set the corresponding bits of port P1 direction register to "1" (output mode).

Figure 2.8.5 shows the connection port control by BSEL0 and BSEL1, Figure 2.8.6 shows the I²C control register.

Fig. 2.8.5 Connection port control by BSEL0 and BSEL1

2.8 Multi-master I²C-BUS interface

2.8 Multi-master I²C-BUS interface

(5) I²C status register (S1: address 00D9₁₆)

The I²C status register (address 00D9₁₆) controls the I²C-BUS interface status. The low-order 4 bits are read-only bits and the high-order 4 bits can be read out and written to.

■ Bit 0: Last receive bit (LRB)

This bit stores the last bit value of received data and can also be used for ACK receive confirmation. If ACK is returned when an ACK clock occurs, the LRB bit is set to "0." If ACK is not returned, this bit is set to "1." Except in the ACK mode, the last bit value of received data is input. The state of this bit is changed from "1" to "0" by executing a write instruction to the I²C data shift register (address 00D7₁₆).

■ Bit 1: General call detecting flag (AD0)

This bit is set to "1" when a general call* whose address data is all "0" is received in the slave mode. By a general call of the master device, every slave device receives control data after the general call. The AD0 bit is set to "0" by detecting the STOP condition or START condition.

■ Bit 2: Slave address comparison flag (AAS)

This flag indicates a comparison result of address data.

①In the slave receive mode, when the 7-bit addressing format is selected, this bit is set to "1" in one of the following conditions.

- The address data immediately after occurrence of a START condition matches the slave address stored in the high-order 7 bits of the I²C address register (address 00D8₁₆).
- A general call is received.

②In the slave reception mode, when the 10-bit addressing format is selected, this bit is set to "1" with the following condition.

• When the address data is compared with the I²C address register (8 bits consists of slave address and RBW), the first bytes match.

(3) The state of this bit is changed from "1" to "0" by executing a write instruction to the I²C data shift register (address 00D7₁₆).

■ Bit 3: Arbitration lost* detecting flag (AL)

In the master transmission mode, when a device other than the microcomputer sets the SDA to LOW by any other device, arbitration is judged to have been lost, so that this bit is set to "1." At the same time, the TRX bit is set to "0," so that immediately after transmission of the byte, whose arbitration was lost is completed, the MST bit is set to "0." When arbitration is lost during slave address transmission, the TRX bit is set to "0" and the reception mode is set. Consequently, it becomes possible to receive and recognize its own slave address transmitted by another master device.

*Arbitration lost: The status in which communication as a master is disabled.

2.8 Multi-master I²C-BUS interface

■ Bit 4: I²C-BUS interface interrupt request bit (PIN)

This bit generates an interrupt request signal. Each time 1-byte data is transmitted, the state of the PIN bit changes from "1" to "0." At the same time, an interrupt request signal is sent to the CPU. The PIN bit is set to "0" in synchronization with a falling edge of the last clock (including the ACK clock) of an internal clock and an interrupt request signal occurs in synchronization with a falling edge of the PIN bit. When the PIN bit is "0," the SCL is kept in the "0" state and clock generation is disabled. Figure 2.8.7 shows an interrupt request signal generating timing chart. The PIN bit is set to "1" in any one of the following conditions.

- Executing a write instruction to the I²C data shift register (address 00D7₁₆).
- When the ESO bit is "0"
- At reset

The conditions in which the PIN bit is set to "0" are shown below:

- Immediately after completion of 1-byte data transmission (including when arbitration lost is detected)
- Immediately after completion of 1-byte data reception
- In the slave reception mode, with ALS = "0" and immediately after completion of slave address or general call address reception
- In the slave reception mode, with ALS = "1" and immediately after completion of address data reception

■ Bit 5: Bus busy flag (BB)

This bit indicates the status of use of the bus system. When this bit is set to "0," this bus system is not busy and a START condition can be generated. When this bit is set to "1," this bus system is busy and the occurrence of a START condition is disabled by the START condition duplication prevention function (Note).

This flag can be written by software only in the master transmission mode. In the other modes, this bit is set to "1" by detecting a START condition and set to "0" by detecting a STOP condition. When the ESO bit of the I^2C control register (address $00DA_{16}$) is "0" and at reset, the BB flag is kept in the "0" state.

■ Bit 6: Communication mode specification bit (transfer direction specification bit: TRX)

This bit decides the direction of transfer for data communication. When this bit is "0," the reception mode is selected and the data of a transmitting device is received. When the bit is "1," the transmission mode is selected and address data and control data are output into the SDA in synchronization with the clock generated on the SCL.

When the ALS bit of the I²C control register (address $00F9_{16}$) is "0" in the slave reception mode is selected, the TRX bit is set to "1" (transmit) if the least significant bit (R/W bit) of the address data transmitted by the master is "1." When the ALS bit is "0" and the R/W bit is "0," the TRX bit is cleared to "0" (receive).

The TRX bit is cleared to "0" in one of the following conditions.

- When arbitration lost is detected.
- When a STOP condition is detected.
- When occurrence of a START condition is disabled by the START condition duplication prevention function (Note).
- With MST = "0" and when a START condition is detected.
- With MST = "0" and when ACK non-return is detected.
- At reset

2.8 Multi-master I²C-BUS interface

- Bit 7: Communication mode specification bit (master/slave specification bit: MST) This bit is used for master/slave specification for data communication. When this bit is "0," the slave is specified, so that a START condition and a STOP condition generated by the master are received, and data communication is performed in synchronization with the clock generated by the master. When this bit is "1," the master is specified and a START condition and a STOP condition are generated, and also the clocks required for data communication are generated on the SCL. The MST bit is cleared to "0" in one of the following conditions.
 - Immediately after completion of 1-byte data transmission when arbitration lost is detected
 - When a STOP condition is detected.
 - When occurrence of a START condition is disabled by the START condition duplication preventing function (Note).
 - At reset

Figure 2.8.7 shows the interrupt request signal generating timing, Figure 2.8.8 shows the I²C status register.

Note: The START condition duplication prevention function disables the START condition generation, reset of bit counter reset, and SCL output when the following condition is satisfied: a START condition is set by another master device.

Fig. 2.8.7 Interrupt request signal generating timing

Fig. 2.8.8 I²C status register

2.8 Multi-master I²C-BUS interface

2.8.3 START condition, STOP condition generation method

(1) START condition generation method

When the ESO bit of the I²C control register (address 00DA₁₆) is "1," execute a write instruction to the I²C status register (address 00D9₁₆) to set the MST, TRX and BB bits to "1." A START condition will then be generated. After that, the bit counter becomes "000₂" and an SCL for 1 byte is output. The START condition generating timing and BB bit set timing are different in the standard clock mode and the high-speed clock mode. Refer to "**Figure 2.8.9**" for the START condition generation timing diagram, and "**Table 2.8.2**" for the START condition/STOP condition generation timing table.

(2) STOP condition generation method

When the ESO bit of the I²C control register (address 00DA₁₆) is "1," execute a write instruction to the I²C status register (address 00D9₁₆) for setting the MST bit and the TRX bit to "1" and the BB bit to "0". A STOP condition will then be generated. The STOP condition generation timing and the BB flag reset timing are different in the standard clock mode and the high-speed clock mode. Refer to "**Figure 2.8.10**" for the STOP condition generating timing diagram, and "**Table 2.8.2**" for the START condition/STOP condition generation timing table.

Fig. 2.8.10 STOP condition generation timing diagram

Table 2.8.2 START	condition/STOP	condition	generation	timing t	table
-------------------	----------------	-----------	------------	----------	-------

Item	Standard clock mode	High-speed clock mode
Setup time	5.0 <i>µ</i> s (20 cycles)	2.5 μs (10 cycles)
Hold time	5.0 <i>µ</i> s (20 cycles)	2.5 µ s (10 cycles)
Set/reset time for BB flag	3.0 <i>µ</i> s (12 cycles)	1.5 <i>µ</i> s (6 cycles)

Note: Absolute time at $\phi = 4$ MHz. The value in parentheses denotes the number of ϕ cycles.

2.8 Multi-master I²C-BUS interface

(3) START/STOP condition detect conditions

The START/STOP condition detect conditions are shown in Figure 2.8.11 and Table 2.8.3. Only when the 3 conditions of Table 10 are satisfied, a START/STOP condition can be detected.

Note: When a STOP condition is detected in the slave mode (MST = 0), an interrupt request signal "IICIRQ" is generated to the CPU.

Fig. 2.8.11 START condition/STOP condition detect timing diagram

Table 2.8.3 START condition/STOP condition detect conditions

Standard clock mode	High-speed clock mode
6.5 μ s (26 cycles) < SCL release time	1.0 μ s (4 cycles) < SCL release time
3.25 μ s (13 cycles) < Setup time	0.5 μ s (2 cycles) < Setup time
3.25 μ s (13 cycles) < Hold time	0.5 μ s (2 cycles) < Hold time

.C

Note: Absolute time at $\phi = 4$ MHz. The value in parentheses denotes the number of ϕ cycles.

2.8 Multi-master I²C-BUS interface

(4) Address Data Communication

There are two address data communication formats, namely, 7-bit addressing format and 10-bit addressing format. The respective address communication formats is described below.

①7-bit addressing format

To meet the 7-bit addressing format, set the 10BIT SAD bit of the I²C control register (address 00DA₁₆) to "0." The first 7-bit address data transmitted from the master is compared with the highorder 7-bit slave address stored in the I²C address register (address 00D8₁₆). At the time of this comparison, address comparison of the RBW bit of the I²C address register (address 00D8₁₆) is not made. For the data transmission format when the 7-bit addressing format is selected, refer to **"Figure 2.8.12, (1) and (2)."**

2 10-bit addressing format

To meet the 10-bit addressing format, set the 10BIT SAD bit of the I²C control register (address 00DA₁₆) to "1." An address comparison is made between the first-byte address data transmitted from the master and the 7-bit slave address stored in the I²C address register (address 00DB₁₆). At the time of this comparison, an address comparison between the RBW bit of the I²C address register (address 00DB₁₆) and the R/W bit which is the last bit of the address data transmitted from the master is made. In the 10-bit addressing mode, the R/W bit which is the last bit of the address data and only specifies the direction of communication for control data but also is processed as an address data bit.

When the first-byte address data matches the slave address, the AAS bit of the I²C status register (address $00D9_{16}$) is set to "1." After the second-byte address data is stored into the I²C data shift register (address $00D7_{16}$), make an address comparison between the second-byte data and the slave address by software. When the address data of the 2nd byte matches the slave address, set the RBW bit of the I²C address register (address $00D8_{16}$) to "1" by software. This processing can match the 7-bit slave address and R/W data, which are received after a RESTART condition is detected, with the value of the I²C address register (address $00D8_{16}$). For the data transmission format when the 10-bit addressing format is selected, refer to "Figure 2.8.12, (3) and (4)."

S	Slave address	R/W	A	Data A	Data	a A/Ā	Р							
(1) A I	7 bits master-transmitte	"0" er trans	mits c	1 to 8 bits lata to a slave-re	1 to 8 eceiver	bits								
S	Slave address	R/W	A	Data A	Data	a Ā	Р							
(2) A I	7 bits master-receiver r	"1" eceives	s data	1 to 8 bits from a slave-tra	1 to 8 Insmitte	bits er								
S	Slave address 1st 7 bits	R/W	А	Slave address 2nd byte	A	Data	А	Data	a A/	Ā P				
(3) A I	7 bits master-transmitte	"0" er trans	mits c	8 bits lata to a slave-re	ceiver	1 to 8 bi with a 1	ts 0-bit ado	1 to 8 dress	oits					
S	Slave address 1st 7 bits	R/W	A	Slave address 2nd byte	A	Sr 5	Slave ad st 7 bits	dress	R/W	Data	А	Data	Ā	Ρ
(4) A I	7 bits master-receiver r	"0" eceives	s data	8 bits from a slave-tra	insmitte	er with a	7 bit 10-bit a	s ddress	"1"	1 to 8 bits		1 to 8 bits	5	
S:S A:A	TART condition CK bit		P∶ R/V	STOP condition √: Read/Write bit	t	F	From ma From sla	ister to ve to n	slave naster					

2.9 A-D comparator

2.9 A-D comparator

The M37221M6-XXXSP/FP has A-D comparator consists of the 6-bit D-A converter by resistance string method and a comparator. Figure 2.9.1 shows the A-D comparator block diagram.

The following explains A-D comparison method.

- ① Set "0" to corresponding bits of the direction register to use ports as analog input pins.
- ⁽²⁾ Select the analog input pin with bits 0 to 2 of A-D control register 1 (address 00EE₁₆).
- ③ Set the comparison voltage "Vref" for D-A conversion by bits 0 to 5 of A-D control register 2 (address 00EF₁₆). Table 2.9.1 shows the Vref values corresponding to the set values above. A-D comparison starts by writing to A-D control register 2.
- (4) This voltage comparison needs for 16 machine cycles (NOP instruction X 8).
- (5) The comparison result is stored in bit 4 of the A-D control register 1 (address 00EE₁₆).

When the input voltage value is lower than the comparison voltage value, bit 4 is cleared to "0"; when the input voltage value is higher than the comparison voltage value, bit 4 is set to "1" (refer to "Figure 2.9.2").

2.9 A-D comparator

Table 2.9.1	Relationship	between	contents of	A-D	control	register	2 and	reference	voltage	"V _{re}	f"

Α	-D cont	rol regi	ister 2			Internal analog voltage
bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	(comparison voltage V _{ref})
0	0	0	0	0	0	1/128Vcc
0	0	0	0	0	1	3/128Vcc
0	0	0	0	1	0	5/128Vcc
:	:	:	:	:	:	:
1	1	1	1	0	1	123/128Vcc
1	1	1	1	1	0	125/128Vcc
1	1	1	1	1	1	127/128Vcc

Fig. 2.9.2 A-D control register 1 (address 00EE₁₆)

Fig. 2.9.3 A-D control register 2 (address 00EF₁₆)

2.10 PWM

The M37221M6-XXXSP/FP has one 14-bit PWM (pulse width modulator) [DA], and six 8-bit PWM [PWM0-PWM5].

Table 2.10.1 shows the PWM function performance.

Table 2.10.1	PWM function	performance	at oscillation	frequency	y = 8 MHz)
--------------	---------------------	-------------	----------------	-----------	------------

Performance	14-bit PWM [DA]	8-bit PWM
Resolution (bits)	14	8
Minimum resolution bit width (μ s)	0.25	4
Repeat cycle (µs)	4096	1024

Figure 2.10.1 shows the 14-bit PWM block diagram and Figure 2.10.2 shows the 8-bit PWM block diagram.

Fig. 2.10.1 14-bit PWM (DA) block diagram

2.10 PWM

Fig. 2.10.2 8-bit PWM block diagram

2.10.1 8-bit PWM registers (addresses 00D016 to 00D416 and 00F616) /DA registers (addresses 00CE16 and 00CF16)

Data transfer from the 8-bit PWM registers (addresses 00D0₁₆ to 00D4₁₆ and 00F6₁₆) to the 8-bit PWM circuit is executed when writing data to the registers. The output signal from the 8-bit PWM output pin corresponds to the contents of this register.

Also, data transfer from the DA registers (addresses $00CE_{16}$ and $00CF_{16}$) to the 14-bit PWM circuit is executed when writing data to the DA-L register (address $00CF_{16}$). The output signal from the D–A output pin corresponds to the contents of the DA latch.

Reading from the DA register (address 00CE₁₆) means the DA latch contents. Therefore, it is possible to confirm the data being output from the D-A output pin by reading the DA register.

The contents of the 8-bit PWM register and DA register are indeterminate after reset.

A.

2.10.2 14-bit PWM (DA output)

The 14-bit PWM automatically outputs a PWM rectangular waveform from the D-A pin by writing high-order 8 bits of the output data to the DA-H register and the low-order 6 bits to the DA-L register. Data of the DA-H register are transferred to the 14-bit PWM circuit when writing to the DA-L register.

The following explains the output operation of 14-bit PWM rectangular waveform (when $f(X_{IN}) = 8$ MHz). The repeat cycle "T" (4,096 μ s) of output waveform is divided into $2^6 = 64$ smaller interval "t" (t = 64 μ s). The "t" is further divided into the minimum resolution bit " τ " of $2^8 = 256$ ($\tau = 0.25 \ \mu$ s).

⁽²⁾The HIGH duration of the fundamental waveform is determined by the high-order 8 bits "D_H" of the DA latch.

HIGH duration (time) = $\tau \times D_{H}$ (when $f(X_{IN}) = 8$ MHz, 0.25D_H μ s)

Because the D_H values are "0" to "255," the HIGH duration can be selected a total of 256.

⁽³⁾ The smaller interval "t_m" with a longer HIGH level area by " τ " is specified by the low-order 6 bits "D_L" of the DA latch. The t_m is specified from among 64 smaller intervals (t₀ to t₆₃).

Therefore, a rectangular waveform consisted of 2-kind waveforms with different HIGH duration are output from pin D–A (a length of entirely HIGH output cannot be output).

Figure 2.10.3 shows the 14-bit PWM output example, Table 2.10.2 shows the relation between D_L and t_m (m = "0" to "63").

Low-order 6-bit data of DA register (D _L)	Smaller intervals that HIGH duration is longer by τ t _m (m = "0" to "63")	Number
MSB 0 0 0 0 0 0 LSB	Nothing 👷 🧏	0
0 0 0 0 1	m = 32	1
0 0 0 1 0	m = 16, 48	2
0 0 0 0 1 1	m = 16, 32, 48	3
0 0 0 1 0 0	m = 8, 24, 40, 56	4
0 0 0 1 0 1	m = 8, 24, 32, 40, 56	5
0 0 0 1 1 0	m = 8, 16, 24, 40, 48, 56	6
÷	:	:
0 0 1 0 0 0	m = 4, 12, 20, 28, 36, 44, 52, 60	8
:	:	:
0 1 0 0 0 0	m = 2, 6, 10, 14, 18, 46, 50, 54, 58, 62	16
:	:	:
1 0 0 0 0 0	m = 1, 3, 5, 7, 9 55, 57, 59, 61, 63	32
:	:	:
1 0 1 0 0 0	m = 1, 3, 5, 7, 9 52, 55, 57, 59, 60, 61, 63	40
:	:	:
1 1 1 1 1 1	m = 1 to 63 ("0" is not included)	63

Table 2.10.2 The relation between D_{L} and t_{m} (m = "0" to "63")

2.10 PWM

2.10 PWM

2.10.3 8-bit PWM (PWM0 to PWM5: address $00D0_{16}$ to $00D4_{16}$ and $00F6_{16}$)

The 8-bit PWM outputs waveform which is the logical sum (OR) of pulses corresponding to bits 0 to 7 of the 8-bit PWM register.

That is to say, 8 kinds of pulses corresponding to the weight of each bit of the 8-bit PWM register are output inside the circuit during 1 cycle. Among these pulses, OR of pulses that correspond to bits, which is set to "1," in the 8-bit PWM register to external devices as PWM output.

Figure 2.10.4 shows the pulse waveforms corresponding to the weight of each bit of the 8-bit PWM register. Figure 2.10.5 shows the example of 8-bit PWM output.

As shown in the Figures, 256 kinds of output (HIGH duration: 0/256 to 255/256) are selected by changing the contents of the PWM register (a length of entirely HIGH cannot be output).

2.10 PWM

2.10 PWM

٦

2.10.4 14-bit PWM output control

How to control the 14-bit PWM output is described below.

- ① Set "0" to bit 0 of PWM output control register 1 (address 00D5₁₆) to supply the PWM count source (this bit is cleared to "0" when reset).
- $\ensuremath{\textcircled{@}}$ Set the high-order 8 bits of the output data to the DA-H register.
- ③ Set the low-order 6 bits of the output data to the DA-L register.
- ④ Data is written to the 14-bit PWM circuit by writing data to the DA-L register. For this reason, even when changing only the high-order 8 bits of the output data, be sure to write the low-order 6 bits data to the DA-L register again. Conversely, when changing low-order 6 bits only, it needs to only write data to the DA-L register, and needs not write the high-order 8-bit data again.
- (5) Select the output polarity by bit 2 of PWM output control register 2 (address 00D6₁₆). When setting to "0," a positive polarity is selected; when "1," a negative polarity is selected.
- (6) 14-bit PWM is output from the D-A pin by clearing bit 1 of PWM output control register 1 to "0." When setting to "1," pin D-A functions as a 1-bit general-purpose output port. In this case, it is possible to specify either HIGH output (= "1") or LOW output(= "0") output by bit 4 of PWM output control register 2.

b7b6b5b4b3b2b1	b0	NM output control registe	er 1 (PW) [Address 00D516]			
	в	Name	Functions	After reset	R	W
	0	DA, PWM count source selection bit (PW0)	0 : Count source supply 1 : Count source stop	0	R	W
	1	DA/PN4 output selection bit (PW1)	0 : DA output 1 : PN4 output	0	R	w
	2	P00/PWM0 output selection bit (PW2)	0: P0o output 1: PWM0 output	0	R	W
	3	P01/PWM1 output selection bit (PW3)	0: P01 output 1: PWM1 output	0	R	W
	4	P02/PWM2 output selection bit (PW4)	0: P02 output 1: PWM2 output	0	R	W
	5	P03/PWM3 output selection bit (PW5)	0: P03 output 1: PWM3 output	0	R	W
	6	P04/PWM4 output selection bit (PW6)	0: P04 output 1: PWM4 output	0	R	W
	7	P05/PWM5 output selection bit (PW7)	0: P05 output 1: PWM5 output	0	R	W

Fig. 2.10.6 PWM output control register 1 (address 00D5₁₆)

2.10 PWM

2.10.5 8-bit PWM output control

How to control the 8-bit PWM output is described below.

- The PWM0–PWM7 output pins are also used for port P00–P03 and P60–P63.
- ① Set "0" to bit 0 of the PWM output control register 1 (address 00D5₁₆) to supply the PWM count source (this bit is cleared to "0" after reset).
- 2 Write output data to the corresponding 8-bit PWM registers (addresses 00D016 to 00D416 and 00F616).
- ③ Set the corresponding bit of the port P0 direction register to "1" to specify the output mode.
- ④ Select the output polarity by bit 3 of the PWM output control register 2 (address 00D6₁₆). When this bit is cleared to "0," a positive polarity is selected; when set to "1," a negative polarity is selected.
- (5) By setting "1" to the corresponding bits among bits 2 to 7 of the PWM output control register 1, the pins are given the PWM output function to output the PWM. When clearing to "0," the pins become general-purpose ports (ports P0₀-P0₅).

Fig. 2.10.7 PWM output control register 2 (address 00D616)

2.11 CRT display function

Table 2.11.1 shows the outline the CRT display function of the M37221M6-XXXSP/FP.

M37220M3-XXXSP/FP

Refer to "CHAPTER 4. M37220M3-XXXSP/FP."

The M37221M6-XXXSP/FP has the 24 characters X 2 lines CRT display circuit. CRT display is controlled by the CRT control register.

Up to 256 kinds of characters can be displayed, and colors can be specified for each character. Up to 4 kinds of colors can be displayed on 1 screen. A combination of up to 7 colors can be obtained by using each output signal (R, G, and B). Characters are displayed in a 12 X 16 dot structure to display smooth character patterns (refer to "**Figure 2.11.1**").

How to display characters on the CRT screen is described below.

- ① Write the display character code in the display RAM.
- ^② Specify the display color by the color register.
- ③ Write the color register in which the display color is set in the display RAM.
- ④ Specify the vertical position by the vertical position register.
- ⑤ Specify the character size by the character size register.
- © Specify the horizontal position by the horizontal position register.
- ⑦ Write the display control bit to the designated block display flag of the CRT control register. When this is done, the CRT starts according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multi-line (more than 3 lines) to be displayed on the screen by interrupting each time 1 line is displayed and rewriting data in the block which display is terminated by software.

Figure 2.11.2 shows the CRT display circuit block diagram. Figure 2.11.3 shows the CRT control register.

P	arameter	Performance		
Number of display		24 characters X 2 lines		
characte	er			
Dot structure		12 dots X 16 dots		
		(Refer to "Figure 2.11.1")		
Kinds of character		256 kinds		
Kinds of	character sizes	3 kinds		
Color	Kind of colors	1 screen; 4 kinds, maximum 7 kinds		
	Coloring unit	A character		
Display extension		Possible (multi-line display)		

Possible (maximum 7 kinds)

Possible (a character unit, 1

screen; 4 kinds, maximum 7 kinds)

Table 2.11.1 Outline of CRT display function

Raster coloring

coloring

Character background

2.11 CRT display function

2.11 CRT display function

Fig. 2.11.3 CRT control register (address 00EA₁₆)

2.11 CRT display function

2.11.1 Display position

The display positions of characters are specified in units called a "block". There are 2 blocks, block 1 and block 2. Up to 24 characters can be displayed in 1 block (refer to "**2.11.3 Memory for display**").

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4 T_c (T_c = oscillation cycle for display).

The display position in the vertical direction is selected from 128-step display positions for each block in units of 4 scanning lines. The display position in the vertical direction is determined by counting the horizontal sync signal (H_{SYNC}).

At this time, it starts to count the rising edge (falling edge*) of H_{SYNC} signal from after about 1 machine cycle of rising edge (falling edge*) of V_{SYNC} signal. So interval from rising edge (falling edge*) of H_{SYNC} signal needs enough time (2 machine cycles or more) for avoiding jitter.

*: The polarity of H_{SYNC} and V_{SYNC} signals can select by the CRT port control register (address 00EC₁₆). When clearing corresponding bits to "0," positive polarity is selected, when setting to "1," negative polarity is selected. Refer to "2.11.7 CRT output pin control" for detail.

2.11 CRT display function

The block 2 is displayed after the display of block 1 is completed (refer to "Figure 2.11.5 (a)"). Therefore, set vertical display start position of block 2 to be lower than the display end position of block 1. The block 2 cannot display when the display position of block 2 is overlapped with the display position of block 1 (refer to "Figure 2.11.5 (b)") or is higher than the display position of block 1 (refer to "Figure 2.11.5 (b)") or is higher than the display position of block 1 (refer to "Figure 2.11.5 (c)"). Same as above, at the multiline display, the next block 1 cannot be displayed until the display of block 2 is completed. Therefore, set the display start position of the second and later block 1 to be lower than the display position of the last block 2 (refer to "Figure 2.11.5 (d)").

Fig. 2.11.5 Display position

2.11 CRT display function

The vertical position can specify 128-step positions (4 scanning lines per step) for each block by setting values "0016" to "7F16" to bits 0 to 6 of the vertical position registers (the blocks 1 and 2 are assigned to addresses to 00E1₁₆, 00E2₁₆ respectively). Figure 2.11.6 shows the vertical position registers.

Fig. 2.11.6 Vertical position register n (addresses 00E116 and 00E216)

The horizontal direction is common to both blocks, and can specify 64-step display positions (4 Tc per step, Tc: oscillation cycle for display) by setting values "0016" to "3F16" to bits 0 to 5 of the horizontal position register (address 00E016).

Figure 2.11.7 shows the horizontal position register.

Fig. 2.11.7 Horizontal position register (address 00E016)

2.11 CRT display function

2.11.2 Character size

The size of characters to be displayed can select from 3 sizes for each block. Set a character size by the character size register (address $00E4_{16}$).

The character size in block 1 can be specified by bits 0 and 1 of the character size register; the character size in block 2 can be specified by bits 2 and 3. Figure 2.11.8 shows the character size register.

Fig. 2.11.8 Character size register (address 00E416)

The character size can select three sizes: minimum size, medium size, and large size. Each character size is determined with the number of scanning lines in the height (vertical) direction and the oscillation cycle for display (= T_c) in the width (horizontal) direction.

The minimum size consists of [1 scanning line] X [1 Tc]; the medium size consists of [2 scanning lines] X [2 Tc]; and the large size consists of [3 scanning lines] X [3 Tc]. Table 2.11.2 shows the relationship between the set values in the character size register and the character sizes.

Table	2.11.	2 Relationshi	n between	set	value in	character	size	register	and	character	sizes
IUNIC	~			301	value ill	onulation	0120	register	ana	onulation	51205

Set values in character size register		Character aire	Width (horizontal) direction	Height (vertical) direction	
CSn1	CSn0	Character size	Tc: oscillation cycle for display	scanning lines	
0	0	Minimum	1 Tc	1 line	
0	1	Medium	2 Tc	2 lines	
1	0	Large	3 Tc	3 lines	
1	1	This is not avai	lable.		

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal display start position is common to all blocks even when the character size varies with each block (refer to "Figure 2.11.9").

2.11 CRT display function

2.11.3 Memory for display

There are 2 types of display memory: CRT display ROM (addresses 10000₁₆ to 11FFF₁₆) used to store (masked) character dot data and CRT display RAM (addresses 0600₁₆ to 06B7₁₆) used to specify the colors and characters to be displayed. Each type of display memory is described below.

(1) CRT display ROM (addresses 10000₁₆ to 11FFF₁₆)

CRT display ROM stores dot pattern data for characters to be displayed. When actually displaying characters stored in this ROM, it is necessary to specify them by writing the character code inherent to each character (code determined based on the addresses in CRT display ROM) into CRT display RAM.

CRT display ROM has a capacity of 8 K bytes. Since 32 bytes are required for 1 character data, the ROM can stores up to 256 kinds of characters.

CRT display ROM is broadly divided into 2 areas. The [vertical 16 dots] X [horizontal (left side) 8 dots] data of display characters are stored in addresses 10000_{16} to $107FF_{16}$ and 11000_{16} to $117FF_{16}$; the [vertical 16 dots] X [horizontal (right side) 4 dots] data of display characters are stored in addresses 10800_{16} to $10FFF_{16}$, 11800_{16} to $11FFF_{16}$ (refer to "**Figure 2.11.10**"). Note however that the high-order 4 bits of the data to be written to addresses 10800_{16} to $10FFF_{16}$ and 11800_{16} to $11FFF_{16}$ must be set to "1" (by writing data FX_{16}).

Fig. 2.11.10 Example of display character data storing form

2.11 CRT display function

The character code used to specify a display character is determined based on the address in the CRT display ROM in which that character data is stored.

Assume that 1 character data is stored in addresses $10XX0_{16}$ to $10XXF_{16}$ (XX denotes " 00_{16} " to " $7F_{16}$ ") and $10YY0_{16}$ to $10YYF_{16}$ (YY denotes "XX + 800_{16} "), then the character code is "XX ₁₆."

In other words, a character code is constructed with the low-order second and third digits (hexadecimal notation) of the 5-digit address (10000_{16} to $107FF_{16}$) where that character data is stored.

A character code is "YY16" in addresses 11000_{16} to $11FFF_{16}$.

Table 2.11.3 shows the character code table.

Character and	Character data stored address				
	Left side 8 dots	Right 4 side 8 dots			
0016	1000016 to 1000F16	1080016 to 1080F16			
01 ₁₆	1001016 to 1001F16	10810 ₁₆ to 1081F ₁₆			
0216	1002016 to 1002F16	1082016 to 1082F16			
0316	1003016 to 1003F16	1083016 to 1083F16			
:	:	:			
7E ₁₆	107E016 to 107EF16	10FE016 to 10FEF16			
7 F ₁₆	107F016 to 107EF16	10FF016 to 10FFF16			
8016	1100016 to 1100F16	1180016 to 1180F16			
81 ₁₆	1101016 to 1101F16	1181016 to 1181F16			
:		T			
FD ₁₆	117D016 to 117DF16	11FD016 to 11FDF16			
FE ₁₆	117E016 to 117EF16	11FE016 to 11FEF16			
FF ₁₆	117F016 to 117EF16	11FF0 ₁₆ to 11FFF ₁₆			

Table 2.11.3 Character code table (be omitted partly)

2.11 CRT display function

(2) CRT display RAM (addresses 060016 to 06B716)

CRT display RAM is assigned to addresses 0600₁₆ to 06B7₁₆, and is divided into a display character code specification part and display color specification part for each block. Table 2.11.4 shows the contents of CRT display RAM.

For example, to display a character at the first character position (leftmost) in block 1, it is necessary to write the character code in address 0600₁₆ and the color register No. to the low-order 2 bits (bits 0 and 1) at address 0680₁₆. The color register No. to be written here is one of the 4 color registers in which display color is set in advance. For details on color registers, refer to **"2.11.4 Color registers."**

Block number	Display position (from left side)	Character code specifying	Color specifying
	1st character	060016	068016
Block 1	2nd character	060116	068116
	3rd character	060216	068216
	:	:	:
	22nd character	061516	069516
	23rd character	061616	069616
	24th character	061716	069716
		061816	069816
Not used		to	· · ·
		061F16	069F16
	1st character	062016	06A0 ₁₆
	2nd character	062116	06A1 ₁₆
	3rd character	062216	06A2 ₁₆
Block 2		:	:
	22nd character	063516	06B5 ₁₆
	23rd character	063616	06B6 ₁₆
	24th character	063716	06B7 ₁₆

Table 2.11.4 Contents of CRT display RAM

2.11 CRT display function

Fig. 2.11.11 Structure of CRT display RAM
2.11 CRT display function

2.11.4 Color registers

A display character color can be specified by setting a color to one of 4 color registers (CO0 to CO3: addresses 00E6₁₆ to 00E9₁₆) and then by specifying the color register with the CRT display RAM.

There are 3 color outputs: R, G, and B. By a combination of these outputs, it is possible to set $2^3 - 1$ (no output) = 7 colors. However, since color registers are only 4, up to 4 colors can be displayed at one time. R, G, and B outputs are set by bits 1 to 3 of the color register. Bit 5 is used to specify either a character output or blank output. Figure 2.11.12 shows the color register.

Either character output or blank output is selected as the OUT1 pin output. Whether blank output or not is selected as the OUT2 pin output.

Fig. 2.11.12 Color register n (addresses 00E616 to 00E916)

2.11 CRT display function

Table 2.11.5 Display example of character background coloring (when green is set for a character and blue is set for background color)

Border selection register Color register												
MD ₀	COn7	COn6	COn₅	COn4	COn3	COn2	COn1	G output	B output	OUT1 output	Character output	OUT2 output
0	0	×	0 (1	1 Note 1	0	1	0	A	No output	A Same output as character A	Green	No output (Note 2)
0	1	×	0	1	0	1	0	A	No output	Same output as character A	Green	Blank output
0	0	0	1	0	0	1	0	A	No output	Blank output	Green 	No output (Note 2)
0	0	0	1	1	0	1	0	A	Background	Blank output	Green Blue TV image of character background is not displayed.	No output (Note 2)
1	×	×	0	1	0	1	0	A	No output	Border output (Black)	Border Green output> (Black)> Video signal and character color (green) are not mixed.	No output (Note 2)
1	0	0	1	0	0	1	0	A	No output	Blank output	Black	No output (Note 2)
1	0	0	1	1	0	1	0	A	Background color – border	Blank output	Border output (Black) TV image of character background is not displayed.	No output (Note 2)

Notes 1: When COn5 = "0" and COn4 = "1," there is output same as a character or border output from the OUT1 pin.

Do not set $COn_5 = "0"$ and $COn_4 = "0."$ **2** $: When only <math>COn_7 = "1"$ and $COn_5 = "0,"$ there is output from the OUT2 pin.

3: The portion "A" in which character dots are displayed is not mixed with any TV video signal.
4: The wavy-lined arrows in the Table denote video signals.

5:n:0 to 3, X:0 or 1

2.11 CRT display function

2.11.5 Multi-line display

The M37221M6-XXXSP/FP can ordinarily display 2 lines on the CRT screen by displaying 2 blocks at different vertical positions. In addition, it can display up to 16 lines by using a CRT interrupt.

A CRT interrupt request occurs at which display of each block has been completed. In other words, character display of a certain block starts when a scanning line reaches the display position (specified by vertical position registers) for that block, and an interrupt occurs when the scanning line exceeds the block. For multi-line display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit = bit 4 at address 00FE₁₆ to "1").

In a CRT interrupt processing routine, the character data and vertical position of the block of which display has been completed (the display as CRT interrupt cause is completed) is then replaced with the character data (contents of CRT display RAM) and display position (contents of vertical position register) for next display.

- **Notes 1:** Set the second and later block 1 display start positions of block 1 to be lower than display position of the last block 2.
 - 2: The CRT interrupt request does not occur at the end of display when the block is not displayed. In other words, if a block is set to off display with the display control bit of the CRT control register (at address 00EA₁₆), a CRT interrupt request does not occurs (refer to "Figure 2.11.14").

2.11 CRT display function

2.11.6 Character border function

An border of 1 clock (1 dot) equivalent size can be added to a display character in both horizontal and vertical directions. The border is output from pin OUT 1. In this case, set bit 5 of a color register to "0" (character is output).

Border can be specified each block by the border selection register (address 00E5₁₆). Table 2.11.6 shows the relationship between the set values of the border selection register and the character border function. Figure 2.11.16 shows the border selection register.

Fig. 2.11.15 Border example

Table 2.11.6 Relationship between set value of border selection register and character border function

Border selection register	Fu	nctions		Example	of output			
MDn0	1.0	notions		Example				
0	O	rdinary		R, G, B output				
1	Border including character			R, G, B output		$\Box _$		
-				OUT1 output				
Border Select	ion Regist	ter						
b7 b6 b5 b4 b3	b2 b1 b0	order selection registe	r (MD) [/	Address 00E516]				
	В	Name		Functions	After reset	RW		
	0	Block 1 OUT1 outpu border selection bit	t (MD10)	0 : Same output as character output 1 : Border output	Indeterminate	RW		
	1	Nothing is assigned. When this bit is read	This bit I out, the	is a write disable bits. value is "0."	0	R —		
	2	Block 1 OUT1 outpu border selection bit	t (MD20)	0 : Same output as character output 1 : Border output	Indeterminate	RW		
	3 to 7	Nothing is assigned. When these bits are	These b read out	bits are write disable bits. t, the values are "0."	0	R —		

2.11 CRT display function

2.11.7 CRT output pin control

CRT display output pins R, G, B, and OUT1 are also used for ports P5₂–P5₅ respectively. When clearing the corresponding bits of the port P5 direction register (address 00CB₁₆) to "0," the pins are set for CRT output pins, when setting to "1," the pins are set for general-purpose port P5. Pin PUT2 is also used for port P1₀. When clearing bit 7 of the CRT control register (address 00EA₁₆) to "0," the pin is set for port P1₀, when setting to "1," the pin is set for port P1₀.

Immediately after reset release, because the port P5 direction register is reset, they become CRT output pins R, G, B, and OUT.

Bits 0 to 4 of the CRT port control register (address 00EC₁₆) can determine H_{SYNC} and V_{SYNC} input polarity and R, G, B, OUT1, and OUT2 output polarity. When clearing corresponding bits to "0," positive polarity is selected, when setting to "1," negative polarity is selected.

Figure 2.11.17 shows the CRT port control.

Fig. 2.11.17 CRT port control register (address 00EC16)

2.11 CRT display function

2.11.8 Raster coloring function

R, G, B, and OUT1 output can be switched to MUTE output. MUTE output can color all displaying area (raster) of screen.

For example, the case that pin B is specified for MUTE signal output is shown in Figure 2.11.18.

When the MUTE signal is output from pin B, the background of the entire screen is colored "BLUE." Then, a character data is output from pin R, for example. When B and R signal outputs are set to "character is output" by the color register at the character "I" output, the output character is colored "YELLOW" ("RED" mixed "BLUE") regardless of the OUT1 signal output.

When outputting the character "O," the output character is colored only "RED" that is not mixed "BLUE" by setting only R signal output to "character is output." However, in this case, set pin OUT1 to "blank is output."

The TV image can be also erase by setting the all R, G, and B pins to MUTE output. The MUTE signal is output from pin OUT1 output, regardless of setting CRT display RAM for pin OUT1.

Whether ordinary video signal outputs or MUTE signal outputs from pins R, G, and B is controlled by bits 5 to 7 of the CRT port control register (refer to "Figure 2.11.17").

Fig. 2.11.18 MUTE signal output example

2.11 CRT display function

2.11.9 Clock for display

As a clock for display to be used for CRT display, it is possible to select one of the following 4 types.

- Main clock supplied from the X_{IN} pin
- Main clock supplied from the X_{IN} pin divided by 1.5
- Clock from the LC or RC supplied from the pins OSC1 and OSC2.

• Clock from the ceramic resonator or quartz-crystal oscillator supplied from the pins OSC1 and OSC2. This clock for display can be selected by the CRT clock selection register (address 00ED₁₆). When selecting the main clock, set the oscillation frequency to 8 MHz.

Fig. 2.11.19 CRT clock selection register

2.12 ROM correction function

2.12 ROM correction function

Only the M37221M8-XXXSP and the M37221MA-XXXSP have this function.

This can correct ROM program data in ROM. Up to 2 addresses (2 blocks) can be corrected, a program for correction is stored in the ROM correction memory in RAM. The ROM memory for correction is 32 bytes X 2 blocks.

Block 1 : addresses 02C016 to 02DF16

Block 2 : addresses 02E016 to 02FF16

Set an address of the ROM data to be corrected into the ROM correction address register. When the value of the counter matches the ROM data address in the ROM correction address, the main program branches to the correction program stored in the ROM correction memory. To return from the correction program to the main program, the op code and operand of the JMP instruction (total of 3 bytes) are necessary at the end of the correction program. When the blocks 1 and 2 are used in series, the above instruction is not needed at the end of the block 1.

The ROM correction function is controlled by the ROM correction enable register.

Notes 1: Specify the first address (op code address) of each instruction as the ROM correction address.

- 2: Use the JMP instruction (total of 3 bytes) to return from the correction program to the main program.
- 3: Do not set the same address to ROM correction addresses 1 and 2 (addresses to 021716 to 021A16).

2.13 Software runaway detect function

2.13 Software runaway detect function

The M37221M6-XXXSP/FP has a function to decode undefined instructions to detect a software runaway. When an undefined op-code is input to the CPU as an instruction code during operation of the M37221M6-XXXSP/FP, the following processing is done.

- ① The CPU generates an undefined instruction decoding signal.
- 2 The device is internally reset because of occurrence of the undefined instruction decoding signal.
- ^③ As a result of internal reset, the same reset processing as in the case of ordinary reset operation is done, and the program restarts from the reset vector.

Note, however, that the software runaway detecting function cannot be invalid.

Fig. 2.13.1 Sequence at detecting software runaway detection

2.14 Low-power dissipation mode

2.14 Low-power dissipation mode

The M37221M6-XXXSP/FP has 2 low-power dissipation modes: the stop mode and the wait mode.

2.14.1 Stop mode

The M37221M6-XXXSP/FP allows the oscillation of X_{IN} to be stopped with keeping all states of registers except timers 3 and 4, input/output ports, and internal RAM. Therefore, the M37221M6-XXXSP/FP can be restarted with the same state where oscillation was stopped, and as a result, the power dissipation can be greatly reduced.

To stop oscillating in such a way, execute the **STP** instruction. The stop mode is set by executing the **STP** instruction. In this mode, the address to fetch the instruction next to the **STP** instruction is output to the address bus, and the oscillation stops with HIGH state of the internal clock ϕ . At this time, the timer 3 overflow signal is further connected to timer 4. Value "FF₁₆" is automatically set to timer 3; value "07₁₆" is automatically set to timer 4.

Immediately before executing the STP instruction, process the following sequence:

- ① Store registers (accumulator, index registers, etc.) in the CPU to internal RAM.
- ⁽²⁾ Disable timers 3 and 4 interrupts (TM3E = TM4E = "0").
- ③ Clear timers 3 and 4 count stop bits to "0" (T34M2 = T34M3 = "0").
- ④ When an interrupt is used for return from the stop mode, enable that interrupt (by clearing the interrupt disable flag to "0" and setting the interrupt enable bit to "1").
- ⑤ Set bit 0 of the timer 34 mode register (address 00F5₁6) to "0" (TM34M0="0") to select f(X_{IN})/16 as the timer 3 count source.

Oscillation is restarted (return from the stop mode) by accepting reset input or interrupt request of INT1, INT2 or INT3. When the interrupt request is accepted, the interrupt processing routine is executed. Note, however, that the internal clock ϕ is not supplied to the CPU until timer 4 overflows after the interrupt request is accepted. This is because a finite time is required for stabilizing of oscillation when an external quartz-crystal oscillator, etc. is used.

When the internal clock ϕ is supplied to the CPU, the CPU executes the interrupt routine. At this time, the address for the first byte of the instruction next to the **STP** instruction is pushed to the stack as a return address. Also note that the timers 3 and 4 interrupt request bits are remained setting to "1." Therefore, clear each bit to "0" in the interrupt routine. Enable one of the INT1, INT2 and INT3 interrupts to use interrupts for restarting oscillation before the executing **STP** instruction (described in a above).

Item	State in stop mode
Oscillation	Stops
CPU	Stops
Internal clock ϕ	Stops at HIGH level
I/O ports	State where STP instruction is executed is held.
Timer, CRT display functions	Stops

Table 2.14.1 State in stop mode

2.14 Low-power dissipation mode

Fig. 2.14.1 Oscillation stabilizing time at return by reset input

Fig. 2.14.2 Execution sequence example at return by occurrence of INT0 interrupt request

2.14 Low-power dissipation mode

2.14.2 Wait mode

The wait mode is set by executing the $\ensuremath{\textbf{WIT}}$ instruction.

In the wait mode, only the internal clock ϕ stops with supplying f(X_{IN}) continuously.

In this case, there is no need to create a wait time by timers as in the case of return from the stop mode, and operation is restarted immediately after return from the wait state.

When reset input or interrupt is accepted, supply of the internal clock ϕ is immediately started, and the device is returned from the wait state. Because the clock $f(X_{\mathbb{N}})$ is continuously supplied in the wait state, return by an internal interrupt as a timer, etc. can also be used.

Table 2.14.2 State in wait mode

Item	State in wait mode
Oscillation	Operating
CPU	Stop
Internal clock ϕ	Stop at HIGH level
I/O ports	State where WIT instruction is executed is held.
Timer, CRT display functions	Operating

Fig. 2.14.3 Reset input time

2.14.3 Interrupts in low-power dissipation mode

The following 4 kinds of interrupts are invalid in the wait mode. Therefore, 4 interrupts below cannot be used to return from the wait mode to the ordinary mode.

Table	2.14.3	Invalid	interrupts	in	the	wait	mode
1 4 8 1 9	2	mvana	monapto			man	moao

Interrupt source	Condition	Reason			
VSYNC interrupt					
CRT interrupt		I ne interrupt request bit cannot be set.			
Timer 2 interrupt	Count source is input from pin P24/TIM2.	The count source cannot be supplied.			
Timer 3 interrupt	Count source is input from pin P2 ₃ /TIM3.	The count source cannot be supplied.			

The following 2 kinds of interrupts can be used to return from the stop mode to the ordinary mode.

① INT1 interrupt

2 INT2 interrupt

③ INT3 interrupt

Figure 2.14.4 shows a transitions of low-power dissipation mode.

2.14 Low-power dissipation mode

2.15 Reset

To reset the microcomputer, applied LOW level to pin $\overrightarrow{\text{RESET}}$ for 2 μ s or more. Reset is released when HIGH level is applied to pin $\overrightarrow{\text{RESET}}$, and the program starts from the address indicated with the reset vector table.

2.15.1 Reset operation

If pin RESET is returned to an HIGH level after being held LOW for 2 μ s or more when the power source voltage is within the recommended range (4.5 V to 5.5 V), timers 3 and 4 are connected by hardware with internally reset state (internal timing signal ϕ is not supplied).

At this time, "FF₁₆" is set to timer 3, and "07₁₆" is set to timer 4. Timer 3 counts down $f(X_{IN})/16$ as its count source; timer 4 counts down the timer 3 overflow signal (even when the device is in internally reset state, $f(X_{IN})$ is continuously supplied to timer 3).

The internal reset is released by timer 4 overflow, and the program is started from an address determined with the contents of address FFFF₁₆ (as high-order address) and contents of address FFFE₁₆ (as low-order address). Figure 2.15.1 shows this sequence.

Fig. 2.15.1 Timing diagram at reset

2.15 Reset

2.15.2 Internal state immediately after reset

Figures 2.15.2 to 2.15.4 show the internal state immediately after reset.

■SFR Area (addresses C016 to DF16)							
	<state after="" immediately="" reset=""></state>						
	0 : "0" immediately after reset						
	1 : "1" immediately after reset						
	? : Indeterminate immediately after reset						
Address Register	State immediately after reset						
CO ₁₆ Port P0 (P0)	?						
C1 ₁₆ Port P0 direction register (D0)	0016						
C2 ₁₆ Port P1 (P1)	3						
C3 ₁₆ Port P1 direction register (D1)	0016						
C4 ₁₆ Port P2 (P2)	2						
C5 ₁₆ Port P2 direction register (D2)	0016						
C616 Port P3 (P3)							
C7 ₁₆ Port P3 direction register (D3)	0016						
C816	?						
C916	?						
CA ₁₆ Port P5 (P5)	0 0 7 7 7 7 7 7						
CB ₁₆ Port P5 direction register (D5)	0016						
CC16	?						
CD ₁₆ Port P3 output mode control register (P3S)	0016						
CE ₁₆ DA-H register (DA-H)	?						
CF ₁₆ DA-L register (DA-L)	0 0 ? ? ? ? ? ? ?						
D0 ₁₆ PWM0 register (PWM0)	?						
D1 ₁₆ PWM1 register (PWM1)	?						
D2 ₁₆ PWM2 register (PWM2)	?						
D3 ₁₆ PWM3 register (PWM3)	?						
D4 ₁₆ PWM4 register (PWM4)	?						
D5 ₁₆ PWM output control register 1 (PW)	0016						
D6 ₁₆ PWM output control register 2 (PN)	0016						
D716 I ² C data shift register (S0)	?						
D816 l ² C address register (S0D)	0016						
D9 ₁₆ ¹² C status register (S1)	0 0 0 1 0 0 0 ?						
DA16 I ² C control register (S1D)	0016						
DB ₁₆ ¹² C clock control register (S2)	0016						
DC ₁₆ Serial I/O mode register (SM)	0016						
DD ₁₆ Serial I/O register (SIO)	?						
DE16	0016						
DF 16	0016						

Fig. 2.15.2 Internal state immediately after reset (1)

2.15 Reset

■SFR Area (addresses E016 to FF16)						
	<state after="" immediately="" reset=""></state>					
	• "0" immediately after react					
	1 : "1" immediately after reset					
	? : Indeterminate immediately					
	after reset					
Address Pogistor	State immediately after reset					
Addless Register	b7 b0					
E0 ₁₆ Horizontal position register (HR)	0016					
E1 ₁₆ Vertical position register 1 (CV1)	0 ? ? ? ? ? ? ?					
E2 ₁₆ Vertical position register 2 (CV2)	0 ? ? ? ? ? ? ? ?					
E_{316}						
E416 Character size register (CS)						
E616 Color register 0 (CO0)						
EZ16 Color register 0 (CO1)	0016					
E_{16} Color register 1 (CO1)						
EQ16 Color register 2 $(CO2)$	0016					
EA16 CRT control register (CC)	0016					
EP/16	2					
EC16 CRT port control register (CRTP)	0016					
ED16 CRT clock selection register (CK)	0016					
EE16 A-D control register 1 (AD1)						
EE16 A-D control register 2 (AD2)	0016					
F0 ₁₆ Timer 1 (TM1)	FF16					
F1 ₁₆ Timer 2 (TM2)	0716					
F2 ₁₆ Timer 3 (TM3)	FF16					
F3 ₁₆ Timer 4 (TM4)	0716					
F4 ₁₆ Timer 12 mode register (T12M)	0016					
F5 ₁₆ Timer 34 mode register (T34M)	0016					
F616 PWM5 register (PWM5)	?					
F7 ₁₆	?					
F816	?					
F9 ₁₆ Interrupt input polarity register (RE)	0 0 0 0 0 0 0 ?					
FA16	0016					
FB ₁₆ CPU mode register (CPUM)	? ? 1 1 1 1 0 0					
FC ₁₆ Interrupt request register 1 (IREQ1)	0016					
FD ₁₆ Interrupt request register 2 (IREQ2)	0016					
FE ₁₆ Interrupt control register 1 (ICON1)	0016					
HH16 Interrupt control register 2 (ICON2)	0016					

2.15 Reset

■2 Page Register Area (addres	ses 21716 to 21B16)
	<pre><state after="" immediately="" reset=""> ① : "0" immediately after reset 1 : "1" immediately after reset ? : Indeterminate immediately after reset</state></pre>
AddressRegister21716ROM correction address 1 (high-order)21816ROM correction address 1 (low-order)21916ROM correction address 2 (high-order)21A16ROM correction address 2 (low-order)21B16ROM correction enable register (RCR)	State immediately after reset b7 b0 ? ? ? 0016

Fig. 2.15.4 Internal state immediately after reset (3) (only M37221M8-XXXSP and M37221MA-XXXSP) .et

2.15 Reset

2.15.3 Notes for poweron reset

When poweron reset, set the external reset circuit so that the reset input voltage must be kept 0.6 V or less until the power source voltage reaches 4.5 V after the power is turned on.

Set the external reset circuit so that the reset input voltage must be kept 0.6 V or less when the power source voltage falls 4.5 V after the power is turned off.

Figures 2.15.5 to 2.15.7 show examples of external reset circuit.

Fig. 2.15.5 Voltage at poweron reset

Fig. 2.15.6 Example of reset circuit (1)

Fig. 2.15.7 Example of reset circuit (2)

2.16 Clock generating circuit

2.16 Clock generating circuit

Oscillation circuit consists of an "oscillation gate" which operates as an amplifier to provide the gain required for oscillation and an "oscillating control flip-flop" to control this. Because of that, it is possible to start and stop oscillating as required. For details concerning start and stop of oscillation, refer to "2.14 Low-power dissipation mode." Figure 2.16.1 shows the clock generating circuit block diagram.

Fig. 2.16.1 Clock generating circuit block diagram

2.17 Oscillation circuit

The M37221M6-XXXSP/FP has a internal oscillation circuits used to obtain the clocks required for operation. Ordinarily, the frequency on clock input pin X_{IN} divided by 2 is the internal clock (internal timing output) ϕ . A quartz-crystal oscillator or ceramic resonator can be connected externally to these circuits.

(1) Oscillation circuit using a quartz-crystal oscillator or ceramic resonator

Figure 2.17.1 shows the circuit example using a quartz-crystal oscillator or a ceramic resonator. As shown in the diagram, oscillation circuit can be constructed by connecting a ceramic resonator (a quartz-crystal oscillator) between pins X_{IN} and X_{OUT} . In this case, set the circuit constants for C_{IN} and C_{OUT} to the values recommended by the resonator manufacturer.

(2) External clock oscillation circuit

Supplying an external clock is possible, Figure 2.17.2 shows the circuit example.

Fig. 2.17.1 Clock oscillation circuit using a ceramic resonator

The M37221M6-XXXSP/FP has a CRT display clock oscillation circuit, so that display clock can be obtained simply by connecting a inductor and capacitor between pins OSC1 and OSC2. Figure 2.17.3 shows the circuit example.

Refer to "2.11.9 Clock for display."

Fig. 2.17.3 Clock oscillation circuit for CRT display

CHAPTER 3 ELECTRICAL CHARACTERISTICS

3.1 Electrical characteristics 3.2 Standard characteristics

A The

7-2

3.1 Electrical characteristics

3.1 Electrical characteristics

Absolute maximum ratings

Symbol		Parameter	Conditions	Ratings	Unit
Vcc	Power source v	oltage Vcc	All voltages are	-0.3 to 6	V
Vı	Input voltage	CNVss	based on Vss.	-0.3 to 6	V
Vi	Input voltage	P00-P07,P10-P17, P20-	Output transistors	-0.3 to Vcc + 0.3	V
		P27, P30-P34, OSC1, XIN,	are cut off.		
		HSYNC, VSYNC, RESET			
Vo	Output voltage	P06, P07, P10-P17, P20-		-0.3 to Vcc + 0.3	V
		P27, P30–P32, R, G, B,			
		OUT1, D-A, Xout, OSC2			
Vo	Output voltage	P00-P05		-0.3 to 13	V
Іон	Circuit current	R, G, B, OUT1, P10-P17,		0 to 1 (Note 1)	mA
		P20-P27, P30, P31, D-A			
IOL1	Circuit current	R, G, B, OUT1, P06, P07,		0 to 2 (Note 2)	mA
		P10, P15-P17, P20-P23,			
		P30–P32, D-A			
OL2	Circuit current	P11-P14	3	0 to 6 (Note 2)	mA
ОЦЗ	Circuit current	P00-P05	7. 34	🔍 0 to 1 (Note 2)	mA
OL4	Circuit current	P24-P27	27 6	0 to 10 (Note 3)	mA
Pd	Power dissipation	n	Ta = 25 °C	550	mW
Topr	Operating tempe	erature	CO.	-10 to 70	°C
Tstg	Storage tempera	ature	*	-40 to 125	°C

Notes 1: The total current that flows out of the IC must be 20 mA (max.).

2: The total input current to IC (IOL1 + IOL2 + IOL3) must be 30 mA or less.

3: The total average input current for ports P24-P27 to IC must be 20 mA or less.

3.1 Electrical characteristics

Symbol	Parameter		Min.	Тур.	Max.	Unit
Vcc	Power source voltage (Note 4), During	CPU, CRT operation	4.5	5.0	5.5	V
Vss	Power source voltage		0	0	0	V
VIH1	HIGH input voltage	P00-P07, P10-P17, P20-P27,	0.8Vcc		Vcc	V
		P30-P34, SIN, SCLK, HSYNC,				
		VSYNC, RESET, XIN, OSC1,				
		TIM2, TIM3, INT1, INT2, INT3				
VIH2	HIGH input voltage	SCL1, SCL2, SDA1, SDA2	0.7Vcc		Vcc	V
		(When using I ² C-BUS)				
VIL1	LOW input voltage	P00-P07, P10-P17, P20-P27,	0		0.4Vcc	V
		P30-P34				
VIL2	LOW input voltage	SCL1, SCL2, SDA1, SDA2	0		0.3Vcc	V
		(When using I ² C-BUS)				
	LOW input voltage	Hsync, Vsync, RESET, TIM2,	0		0.2Vcc	V
VIL3		TIM3, INT1, INT2, INT3, X _{IN} ,				
		OSC1, SIN, SCLK				
Іон	HIGH average output current (Note 1)	R, G, B, OUT1, D-A,			1	mA
		P10-P17, P20-P27, P30, P31				
OL1	LOW average output current (Note 2)	R, G, B, OUT1, D-A, P06, P07,			2	mA
		P10, P15-P17, P20-P27, P30-				
		P32				
OL2	LOW average output current (Note 2)	P11-P14			6	mA
OL3	LOW average output current (Note 2)	P00-P05			1	mA
OL4	LOW average output current (Note 3)	P24-P27			10	mA
f(XIN)	Oscillation frequency (for CPU operation	n) (Note 5) Xıℕ	7.9	8.0	8.1	MHz
fcrt	Oscillation frequency (for CRT display)	(Note 5) OSC1	5.0		8.0	MHz
f hs1	Input frequency	TIM2, TIM3			100	kHz
f hs2	Input frequency	Sclk			1	MHz
f _{hs3}	Input frequency	SCL1, SCL2			400	kHz

Recommended operating conditions (T_a = -10 °C to 70 °C, V_{cc} = 5 V ± 10 %, unless otherwise noted)

Notes 1: The total current that flows out of the IC must be 20 mA (max.).

2: The total input current to IC (IOL1 + IOL2 + IOL3) must be 30 mA or less.

3: The total average input current for ports P24–P27 to IC must be 20 mA or less.

4: Connect 0.1 μ F or more capacitor externally across the power source pins Vcc–Vss so as to reduce power source noise. Also connect 0.1 μ F or more capacitor externally across the pins Vcc–CNVss.

5: Use a quartz-crystal oscillator or a ceramic resonator for the CPU oscillation circuit.

3.1 Electrical characteristics

Symbol	Derer		Test oor		Linit			
Symbol	Parar	neter	Test cor	lations	Min.	Тур.	Max.	Unit
Icc	Power source current	System operation	$V_{cc} = 5.5 V,$	CRT OFF		20	40	mA
			$f(X_{IN}) = 8 MH$	Z CRT ON		30	60	
		Stop mode	$V_{cc} = 5.5 V, 1$	$f(X_{IN}) = 0$			300	μA
Vон	HIGH output voltage	R, G, B, OUT1, D-A,	Vcc = 4.5 V		2.4			V
		P10-P17, P20-P27,	Iон = -0.5 mA	N N				
		P30, P31						
Vol	LOW output voltage	R, G, B, OUT1, D-A,	Vcc = 4.5 V				0.4	V
		P00–P07, P10,	lo∟ = 0.5 mA					
		P15–P17, P20–P23,						
		P30–P32						
	LOW output voltage	P11–P14	Vcc = 4.5 V	lo∟ = 3 mA			0.4	
				lo∟ = 6 mA			0.6	
	LOW output voltage	P24–P27	Vcc = 4.5 V				3.0	
			lo∟= 10.0 mA					
V _{T+} –V _{T-}	Hysteresis	RESET	Vcc = 5.0 V			0.5	0.7	V
	Hysteresis (Note)	Hsync, Vsync, TIM2,	Vcc = 5.0 V			0.5	1.3	
		TIM3, INT1, INT2,	23	C				
		INT3, SCL1, SCL2,	132	<i>u</i> .				
		SDA1, SDA2, SIN,	CO					
		Sclk						
I IZH	HIGH input leak current	RESET, P00–P07,	$V_{cc} = 5.5 V$				5	μA
		P10-P17, P20-P27,	V1 = 5.5 V					
		P30-P34, HSYNC,						
		Vsync						
IZL	LOW input leak current	RESET, P00–P07,	Vcc = 5.5 V				5	μA
		P10–P17, P20–P27,	$V_1 = 0 V$					
		P30-P34, Hsync,						
		Vsync						
Іогн	HIGH output leak current	P0₀–P0₅	Vcc = 5.5 V				10	μA
			Vo = 12 V					
Rвs	I ² C-BUS·BUS switch	connection resistor	Vcc = 4.5 V				130	W
	(between SCL1 and S	CL2, SDA1 and SDA2)						

Electric characteristics (V_{cc} = 5 V ± 10 %, V_{ss} = 0 V, $f(X_{IN})$ = 8 MHz, T_a = -10 °C to 70 °C, unless otherwise noted)

Note: P06, P07, P15, P23 and P24 have the hysteresis when these pins are used as interrupt input pins or timer input pins. P20–P22 have the hysteresis when these pins are used as serial I/O pins. P11–P14 have the hysteresis when these pins are used as multi-master I²C-BUS interface pins.

3.1 Electrical characteristics

A-D Comparator characteristics

(Vcc = 5 V \pm 10 %, Vss = 0 V, f(XiN) = 8 MHz, Ta = -10 °C to 70 °C, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Linit
			Min.	Тур.	Max.	Unit
	Resolution				6	bits
	Absolute accuracy		0	±1	±2	LSB

Note: When VCC = 5 V, 1 LSB = 5/64 V.

Multi-master I²C-BUS bus line characteristics

	Parameter			Standard clod mode		High-speed clock mode	
Symbol				Max.	Тур.	Max.	Unit
t BUF	Bus free time	4.7		1.3		μs	
thd:sta	Hold time for START condition	for START condition 4.0					μs
tLOW	LOW period of SCL clock	4.7		1.3		μs	
tR	Rising time of both SCL and SDA signals		1000	20+0.1C₀	300	ns	
thd:dat	Data hold time	0	No.	0	0.9	μs	
tнigн	HIGH period of SCL clock	4.0	-11-	0.6		μs	
t⊧	Falling time of both SCL and SDA signals		300	20+0.1C₀	300	ns	
tsu:dat	Data set-up time	250		100		ns	
tsu:sta	Set-up time for repeated START condition	G	4.7		0.6		μs
tsu:sto	Set-up time for STOP condition		4.0		0.6		μs

Note: Cb = total capacitance of 1 bus line

Fig. 3.1.1 Definition diagram of timing on multi-master I²C-BUS

3.2 Standard characteristics

3.2 Standard characteristics

The data described in this section are characteristic examples. Refer to "**3.1 Electrical characteristics**" for rated values.

100.00 LOW level output current I OL [mA] 80.00 Vcc=5.5V 60.00 40.00 Vcc=4.5V 20.00 0.000 0.000 1.200 2.400 3.600 4.800 6.000 LOW level output voltage VOL [V] 2. Ports P06 and P07 (a) IOH-VOL characteristics 100.00 HIGH level output current IOH [mA] 80.00 60.00 Vcc=5.5V 40.00 Vcc=4.5V 20.00 0.000 6.000 0.000 1.200 2.400 3.600 4.800

1. Ports P00-P05 and P32

LOW level output voltage VOL [V]

3.2 Standard characteristics

3. Ports P10, P15–P17, P20–P23, P30, P31 and D-A
(a) IOL–VOL characteristics

HIGH level output voltage VOH [V]

3.2 Standard characteristics

4. Ports P11-P14

3.2 Standard characteristics

5. Ports P24–P27

HIGH level output voltage VOH [V]

3.2 Standard characteristics

6. Ports P52-P55

HIGH level output voltage VOH [V]

CHAPTER 4 M37220M3-XXXSP/FP

- 4.1 Performance overview
 4.2 Pin configuration
 4.3 Pin description
 4.4 Functional block diagram
 4.5 Functional description
 4.6 Electrical characteristics
 - 4.7 Standard characteristics

4.1 Performance overview

4.1 Performance overview

This chapter is described about M37220M3-XXXSP/FP.

M37220M3-XXXSP/FP has the common functions with M37221M6-XXXSP/FP except for part of functions. This chapter explains the differences between M37220M3-XXXSP/FP and M37221M6-XXXSP/FP. Therefore, refer to the corresponding descriptions of M37221M6-XXXSP/FP about the common functions.

The 8-bit microcomputer M37220M3-XXXSP/FP has many additional functions for tuning system for TV:

Parameter			Performance		
Number of basic instructions			71		
Instruction execution time			0.5 μ s (the minimum instruction execution time, at 8		
			MHz oscillation frequency)		
Clock frequency			8 MHz (maximum)		
Memory size ROM			12 K bytes		
	RAM CRT ROM CRT RAM		256 bytes		
			4 K bytes		
			80 bytes		
Input/Output ports	P00-P07	I/O	8-bit X 1 (N-channel open-drain output structure, can be		
			used as PWM output pins, INT input pins, A-D input pin)		
	P10-P17	I/O	8-bit X 1 (CMOS input/output structure, can be used as		
			A-D input pins, INT input pin)		
	P20, P21	I/O	2-bit × 1 (CMOS input/output or N-channel open-drain		
			output structure, can be used as serial I/O pins)		
	P22–P27	1/0	6-bit × 1 (CMOS input/output structure, can be used as		
			serial input pin, external clock input pins)		
	P30, P31	I/O	2-bit X 1 (CMOS input/output or N-channel open-drain		
			output structure, can be used as D-A conversion output		
			pins, A-D input pins)		
	P32	I/O	1-bit X 1 (N-channel open-drain output structure)		
	P33, P34	Input	2-bit X 1 (can be used as CRT display clock I/O pins)		
	P52–P5₅	Output	4-bit X 1 (CMOS output structure, can be used as CRT		
			output pins)		
Serial I/O	·		8-bit X 1		
A-D comparator			6 channels (6-bit resolution)		
D-A converter			2 (6-bit resolution)		
PWM output circuit			14-bit X 1, 8-bit X 6		
Timers			8-bit timer X 4		
Subroutine nesting			96 levels (maximum)		
Interrupt			External interrupt X 3, Internal timer interrupt X 4, Serial		
			I/O interrupt X 1, CRT interrupt X 1, $f(X_{IN})/4096$ interrupt		
			X 1, VSYNC interrupt X 1, BRK interrupt X 1		
Clock generating circ	cuit		2 built-in circuits (externally connected a ceramic resonator		
			or a quartz-crystal oscillator)		
Power source voltag	e		5 V ± 10 %		

Table 4.1.1 Performance overview (1)

M37220M3-XXXSP/FP

4.1 Performance overview

Pa	rameter	Performance		
Power dissipation CRT ON		165 mW typ. (at oscillation frequency $f(X_{IN}) = 8$ MHz,		
		fcrt = 8 MHz)		
	CRT OFF	110 mW typ. (at oscillation frequency $f(X_{IN}) = 8$ MHz)		
	In stop mode	1.65 mW (maximum)		
12V withstand ports		6		
LED drive ports		4		
Operating temperature range		-10 °C to 70 °C		
Device structure		CMOS silicon gate process		
Package	M37220M3-XXXSP	42-pin shrink plastic molded DIP		
	M37220M3-XXXFP	42-pin shrink plastic molded SOP		
CRT display function	Number of display characters	20 characters X 2 lines (maximum 16 lines by software)		
	Dot structure	12 X 16 dots		
	Kinds of characters	128 kinds		
	Kinds of character sizes	3 kinds		
	Kinds of character	Maximum 7 kinds (R, G, B); can be specified by the		
	colors	character		
	Display position (horizontal, vertical)	64 levels (horizontal) × 128 levels (vertical)		

Table 4.1.2 Performance overview (2)

M37220M3-XXXSP/FP

4.2 Pin configuration

4.2 Pin configuration

The pin configurations are shown in Figures 4.2.1 and 4.2.2.

M37220M3-XXXSP/FP

4.2 Pin configuration

Fig. 4.2.2 Pin configuration (top view) (2)

4.3 Pin description

4.3 Pin description

The pin description of M37220M3-XXXSP/FP is shown in Table 4.3.1.

Table 4.3.1 Pin description (1)

Pin	Name	Input/	Functions
	_	Output	
Vcc,	Power source		Apply voltage of 5 V \pm 10 % (typical) to V _{cc} , and 0 V to V _{ss} .
Vss			
CNVss	CNVss		This is connected to Vss.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for
			2 μ s or more (under normal Vcc conditions).
			If more time is needed for the quartz-crystal oscillator to stabilize, this
			"L" condition should be maintained for the required time.
Xin	Clock input	Input	This chip has an internal clock generating circuit. To control generating
			frequency, an external ceramic resonator or a quartz-crystal oscillator
Xout	Clock output	Output	is connected between pins X _{IN} and X _{OUT} . If an external clock is used,
7001		Output	the clock source should be connected to the XIN pin and the XOUT pin
			should be left open.
P00	I/O port P0	I/O	Port P0 is an 8-bit I/O port with direction register allowing each I/O bit
PWM0-			to be individually programmed as input or output. At reset, this port is
P05/			set to input mode. The output structure is N-channel open-drain output.
PWM5,			The note out of this Table gives a full of port P0 function.
P06/INT2/	PWM output	Output	Pins P00-P05 are also used as PWM output pins PWM0-PWM5
A-D4,			respectively. The output structure is N-channel open-drain output.
P07/INT1	External	Input	Pins P06, P07 are also used as external interrupt input pins INT2,
	interrupt input		INT1 respectively.
	Analog input	Input	P0 ₆ pin is also used as analog input pin A-D4.
P11-P14,	I/O port P1	I/O	Port P1 is an 8-bit I/O port and has basically the same functions as
P1₅/A-D1/			port P0. The output structure is CMOS output.
INT3,	Analog input	Input	Pins P15-P17 are also used as analog input pins A-D1 to A-D3
P16/A-D2,			respectively.
P17/A-D3	External	Input	P1₅ pin is also used as external interrupt input pin INT3.
	interrupt input		
4.3 Pin description

Table 4.3.2	Pin descriptio	n (2)					
Pin	Name	Input/ Output	Functions				
P20/Sclk,	I/O port P2	I/O	Port P2 is an 8-bit I/O port and has basically the same functions as				
P21/Sout,			port P0. The output structure is CMOS output.				
P22/SIN,	External clock	Input	Pins P2 ₃ , P2 ₄ are also used as external clock input pins TIM3, TIM2				
P23/TIM3,	input		respectively.				
P24/TIM2,	Serial I/O	I/O	P2 ₀ pin is also used as serial I/O synchronous clock input/output pin				
P2₅–P27	synchronous		Sclk. The output structure is N-channel open-drain output.				
	clock input/						
	output						
	Serial I/O data	I/O	Pins P21, P22 are also used as serial I/O data input/output pins Sout,				
	input/output		S _{IN} respectively. The output structure is N-channel open-drain output.				
P30/A-D5/	I/O port P3	I/O	Ports P30–P32 are 3-bit I/O ports and have basically the same functions				
DA1,			as port P0. Either CMOS output or N-channel open-drain output structure				
P31/A-D6/			can be selected as the port P30 and P31. The output structure of port				
DA2, P32			P32 is N-channel open-drain output.				
	Analog input	Input	Pins P3 ₀ , P3 ₁ are also used as analog input pins A-D5, A-D6 respectively.				
	D-A conversion	Output	Pins P3 ₀ , P3 ₁ are also used as D-A conversion output pins DA1, DA2				
	output		respectively.				
P33/OSC1,	Input port P3	Input	Ports P3 ₃ , P3 ₄ are 2-bit input ports.				
P34/OSC2	Clock input for	Input	P3₃ pin is also used as CRT display clock input pin OSC1.				
	CRT display						
	Clock output for	Output	P34 pin is also used as CRT display clock output pin OSC2. The				
	CRT display		output structure is CMOS output.				
P52/R,	Output port P5	Output	Ports P5 ₂ –P5 ₅ are 4-bit output ports. The output structure is CMOS				
P5₃/G,			output.				
P54/B,	CRT output	Output	Pins P5₂–P5₅ are also used as CRT output pins R, G, B, OUT respectively.				
P5₅/OUT			The output structure is CMOS output.				
HSYNC	Hsync input	Input	This is a horizontal synchronous signal input for CRT.				
VSYNC	V _{SYNC} input	Input	This is a vertical synchronous signal input for CRT.				
D-A	DA output	Output	This is a 14-bit PWM output pin.				

4.4 Functional block diagram

4.4 Functional block diagram

The functional block diagram is shown in Figure 4.4.1.

4.5 Functional description

4.5 Functional description

Functions of M37220M3-XXXSP/FP are partially different from those of M37221M6-XXXSP/FP. Table 4.5.1 shows the difference between M37220M3-XXXSP/FP and M37221M6-XXXSP/FP.

P	Paramater	M37220M3-XXXSP/FP	M37221M6-XXXSP/FP
Programm	able I/O ports	33	33
	Port P0	8 bits	8 bits
	Port P1	8 bits	8 bits
		(Functions except port are	
		partially different.)	
	Port P2	8 bits	8 bits
	Port P3	8 bits	8 bits
		(Functions except port are	
		partically different.)	
	Port P5	4 bits	4 bits
Interrupts		No multi-master I ² C-BUS	There is multi-master I ² C-BUS
		interface interrupt	interface interrupt
		(Priority level is the same as	
		M37221M6-XXXSP/FP.)	
D-A conve	erter	Included 🕺 🎸 🔨	
		2 (6-bit resolution)	
Multi-mast	er I ² C-BUS interface		Included
			1 (2 systems)
CRT displa	ay function		
	Number of display characters	20 characters X 2 lines	24characters X 2 lines
	Kinds of characters	128 kinds	256 kinds
	Kinds of character back	Not available	Possible
	ground colors		(It can be specified by the character.)
			Maximum 7 kinds

Table 4.5.1 Difference between M37220M3-XXXSP/FP and M37221M6-XXXSP/FP

4.5 Functional description

4.5.1 Access area

Figure 4.5.1 shows the M37220M3-XXXSP/FP access area.

Fig. 4.5.1 Access area

4.5 Functional description

4.5.2 Memory assignment

Figure 4.5.2 shows the memory assignment M37220M3-XXXSP/FP.

Fig. 4.5.2 Memory assignment

■SFR Area (addresses C016 to	DF16)	
	<bit allocation=""></bit>	<state after="" immediately="" reset=""></state>
		0 : "0" immediately after reset
		1 : "1" immediately after reset
	: No function bit	? : Undefined immediately
	0 : Fix this bit to "0" (do not write "1")	after reset
	1 : Fix this bit to "1" (do not write "0")	
Address Register	Bit allocation	State immediately after reset
CO16 Port P0 (P0)) <u>67 50</u>
C1 ₁₆ Port P0 direction register (D0)		0016
C_{216} Port P1 (P1)		?
C3 ₁₆ Port P1 direction register (D1)		0016
C4 ₁₆ Port P2 (P2)		?
C5 ₁₆ Port P2 direction register (D2)		0016
C6 ₁₆ Port P3 (P3)	4.4	
C7 ₁₆ Port P3 direction register (D3)	2 3	0016
C816	36.35	?
C916	132 - 01	?
CA ₁₆ Port P5 (P5)		0 0 ? ? ? ? ? ?
CB ₁₆ Port P5 direction register (D5)		0016
CC16		?
CD ₁₆ Port P3 output mode control register (P3S)	DA2S DA1S P31S P30S	; 00 16
CE ₁₆ DA-H register (DA-H)		?
CF ₁₆ DA-L register (DA-L)		0 0 ? ? ? ? ? ? ?
D0 ₁₆ PWM0 register (PWM0)		?
D1 ₁₆ PWM1 register (PWM1)		?
D2 ₁₆ PWM2 register (PWM2)		?
D3 ₁₆ PWM3 register (PWM3)		?
D4 ₁₆ PWM4 register (PWM4)		?
D5 ₁₆ PWM output control register 1 (PW)	PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0	0016
D6 ₁₆ PWM output control register 2 (PN)	PN4 PN3 PN2	0016
D716		?
D816		?
D916		?
DA16		?
DB16		?
DC ₁₆ Serial I/O mode register (SM)		
DD ₁₆ Serial I/O regsiter (SIO)		
DE ₁₆ DA1 conversion register (DA1)	0 DA15 DA14 DA13 DA12 DA11 DA10	
DF ₁₆ DA2 conversion register (DA2)	U DA25 DA24 DA23 DA22 DA21 DA20	

Fig. 4.5.3 Memory map of SFR (special function register) (1)

SFR	Area (addresses E016	to F	=F16	6)													
<bit allocation=""></bit>								<state after="" immediately="" reset=""></state>									
	Name : Function bit				0 : "0" immediately after reset				set set								
			: No	funct	ion b	oit				?	: Ur	ndefir	ned	imr	nedia	itely	
			· Fix	this	bit t	ი "0	"				aft	er re	set			,	
			(do	not	writ	e "1'	")										
		1	: Fix (do	this not	bit t writ	:o "1 e "0'	")										
Addre	ess Register	b7		Bi	t alle	ocati	ion		b0	St b7	ate	imm	edia	ately	/ afte	r res	et b0
E016	Horizontal position register (HR)			HR5	HR4	HR3	HR2	HR1	HR0				00) 16			
E116	Vertical position register 1 (CV1)		CV16	CV15	CV14	CV13	CV12	CV11	CV10	0	?	?	?	?	?	?	?
E216	Vertical position register 2 (CV2)		CV26	CV25	CV24	CV23	CV22	CV21	CV20	0	?	?	?	?	?	?	?
E316			-				1				4	P	í	?		r –	
E416	Character size register (CS)					CS21	CS20	CS11	CS10	0	0	0	0	?	?	?	?
E516	Border selection register (MD)						MD20		MD10	0	0	0	0	0	?	0	?
E616	Color register 0 (CO0)			CO05		CO03	CO02	CO01	1	-	C		00	J 16			
E716	Color register 1 (CO1)			CO15	4	C013	CO12	CO11		177			00	J 16			
E816	Color register 2 (CO2)			CO25		CO23	0022	0021					00	J16			
E916	Color register 3 (CO3)		-	035		0033	0032	0031	000				00	J16			
EA16	CRT control register (CC)		•	<u>}</u>			1002						- 00	J16 2			
	CPT part control register (CPTP)	OP7	OP6	OP5	OUT		R/G/B	VSYC	HSYC				00	<u>'</u>)16			
	CPT clock soloction register (CK)	0	0	0.0	0	0	0	CK1	СКО				00)16			
ED16	A-D control register 1 (AD1)				ADM4		ADM2	ADM1	ADM0	0	0	0	2		0	0	0
EE16	A-D control register 2 (AD2)			ADC5	ADC4	ADC3	ADC2	ADC1	ADC0		Ŭ	0	<u>:</u> 00	016		Ŭ	
E016	Timer 1 (TM1)												FF	=16			
F1 ₁₆	Timer 2 (TM2)												07	716			
F216	Timer 3 (TM3)												FF	- 16			
F316	Timer 4 (TM4)												07	716			
F416	Timer 12 mode register (T12M)			0	T12M4	T12M3	T12M2	T12M1	T12M0				00	016			
F516	Timer 34 mode register (T34M)	T34M5 T34M4 T34M3 T34M2 T34M1 T34M0						00	016								
F6 16	PWM5 register (PWM5)							(?								
F7 16														?			
F8 16														?			
F9 16	Interrupt input polarity register (RE)	0		RE5	RE4	RE3	0	0		0	0	0	0	0	0	0	?
FA 16	Test register (TEST)				00	16							00) 16			
FB16	CPU mode register (CPUM)	1	1	1	1	1	CM2	0	0	1	1	1	1	1	1	0	0
FC 16	Interrupt request register 1 (IREQ1)	IT3R		VSCR	CRTR	TM4R	TM3R	TM2R	TM1R				0	016			
FD16	Interrupt request register 2 (IREQ2)	0			MSR		S1R	1T2R	1T1R				00	016			
FE16	Interrupt control register 1 (ICON1)	IT3E		VSCE	CRTE	TM4E	TM3E	TM2E	TM1E				00	016			
FF ₁₆	Interrupt control register 2 (ICON2)	0	0	0	MSE	0	S1E	1T2E	1T1E				00	016			

Fig. 4.5.4 Memory map of SFR (special function register) (2)

4.5 Functional description

4.5.3 Input/Output pins

Table 4.5.2 shows the difference of programmable ports between M37221M6-XXXSP/FP and M37220M3-XXXSP/FP.

Table 4.5.2 Difference of programmable ports between M37221M6-XXXSP/FP and M37220M3-XXXSP/FP

Dort	Functions except port								
FUIL	M37220M3-XXXSP/FP	M37221M6-XXXSP/FP							
P00-P05	*	PWM0–PWM5							
P06	*	INT2/A-D4							
P07	*	INT1							
P10	No function	OUT2							
P1 1	No function	SCL1							
P12	No function	SCL2							
P13	No function	SDA1							
P14	No function	SDA2							
P1₅	*	A-D1/INT3							
P16	*	A-D2							
P17	*	A-D3							
P20	*	Sclk							
P2 1	*	Sout							
P22	*	Sin							
P23	*	TIM3							
P24	*	TIM2							
P25-P27	*	—							
P30	A-D5/DA1	A-D5							
P31	A-D6/DA2	A-D6							
P32	*	_							
P3 ₃	*	OSC1							
P34	*	OSC2							
P52	*	R							
P5₃	*	G							
P54	*	В							
P5₅	OUT	OUT1							

*: It is the same as M37221M6-XXXSP/FP.

4.5 Functional description

4.5.4 Interrupts

The M37220M3-XXXSP/FP has 13 sources (reset is included) of interrupts.

Duitauituu	Interrupt courses	Vector a	ddresses	Pomarks		
Priority	interrupt sources	High-order byte Low-order byte		Kemarko		
1	Reset (Note)	FFFF ₁₆	FFFE ₁₆	Non-maskable		
2	CRT interrupt	FFFD ₁₆	FFFC ₁₆			
3	INT2 interrupt	FFFB ₁₆	FFFA ₁₆	Active edge selectable		
4	INT1 interrupt	FFF9 ₁₆	FFF8 ₁₆	Active edge selectable		
5	Timer 4 interrupt	FFF5 ₁₆	FFF4 ₁₆			
6	f(X _{IN})/4096 interrupt	FFF3 ₁₆	FFF2 ₁₆			
7	VSYNC interrupt	FFF1 ₁₆	FFF0 ₁₆	Active edge selectable		
8	Timer 3 interrupt	FFEF ₁₆	FFEE ₁₆			
9	Timer 2 interrupt	FFED ₁₆	FFEC ₁₆			
10	Timer 1 interrupt	FFEB ₁₆	FFEA ₁₆			
11	Serial I/O interrupt	FFE9 ₁₆	FFE8 ₁₆			
12	INT3 interrupt	FFE5 ₁₆	FFE4 ₁₆	Active edge selectable		
13	BRK instruction interrupt	FFDF ₁₆	FFDE ₁₆	Non-maskable (software interrupt)		

Table 4.5.3 Interrupt sources, vector addresses and priority

Note: Reset are included in the table because it operates in the same way as interrupts.

The different interrupt-related registers from those of M37221M6-XXXSP/FP are shown in the following pages.

Fig. 4.5.5 Interrupt request register 1 (address 00FC16) 🏂

b7b6b5b4b3b2b1b0	In	terrupt control register 1 (IC)	N1) [Address 00FF16]	I		
		ion option in option in (rev				
	В	Name	Functions	After reset	R	W
	0	Timer 1 interrupt enable bit (TM1E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	1	Timer 2 interrupt enable bit (TM2E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	2	Timer 3 interrupt enable bit (TM3E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	3	Timer 4 interrupt enable bit (TM4E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	4	CRT interrupt enable bit (CRTE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
· · · · · · · · · · · · · · · · · · ·	5	VSYNC interrupt enable bit (VSCE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	6	Nothing is assigned. This bi When this bit is read out, th	t is a write disable bit. e value is "0."	0	R	—
 	7	INT3 interrupt enable bit (IT3E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W

Fig. 4.5.6 Interrupt control register 1 (address 00FE₁₆)

4.5 Functional description

4.5.5 D-A converter

M37220M3-XXXSP/FP has 2 D-A converter with 6-bit resolution. Figure 4.5.7 shows the D-A converter block diagram.

Fig. 4.5.7 D-A converter block diagram

D-A conversion is performed by setting the value in the DA conversion register. The result of D-A conversion is output from the DA pin by setting "1" to the DA output enable bit of the port P3 output mode control register (bits 2 and 3 at address 00CD16). The output analog voltage V is determined with the value n (n: decimal number) in the DA conversion register.

$$V = V_{cc} \times \frac{n}{64}$$
 (n = 0 to 63)

The DA output does not build in a buffer, so connect an external buffer when driving a low-impedance load.

Table 4.5.4 Relationship between contents of D-A conversion register and output voltage "V"

	A-D	contro	Output							
bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	voltage "V"				
0	0	0	0	0	0	0/64 Vcc				
0	0	0	0	0	1	1/64 Vcc				
0	0	0	0	1	0	2/64 Vcc				
:	:	:	:	• •	:	:				
1	1	1	1	0	1	61/64 Vcc				
1	1	1	1	1	0	62/64 Vcc				
1	1	1	1	1	1	63/64 Vcc				

Fig. 4.5.8 DA n conversion register (addresses 00DE₁₆ and 00DF₁₆)

		ÓN	.CU							
Port P3 Output Mode Control Register										
b7 b6 b5 b4 b3 b2 b1 b0] P	ort P3 output mode con	trol register (P3S) [addres	s 00CD1	6]					
	В	Name	Functions	After reset	RW					
	0	P30 output structure selection bit (P30S)	0 : CMOS output 1 : N-channel open-drain output	0	RW					
	1	P31 output structure selection bit (P31S)	0 : CMOS output 1 : N-channel open-drain output	0	RW					
	2	DA1 output enable bit (DA1S)	0 : P3o input/output 1 : DA1 output	0	RW					
	3	DA2 output enable bit (DA2S)	0 : P31 input/output 1 : DA2 output	0	RW					
	4 to 7	Nothing is assigned. These I When these bits are read ou	bits are write disable bits. t, the values are "0."	0	R —					

Fig. 4.5.9 Port P3 output mode control register (address 00CD16)

4.5 Functional description

4.5.6 CRT Display function

Table 4.5.5 shows the outline the CRT display function of the M37220M3-XXXSP/FP.

Parameter		Performance			
Number of display character		20 characters X 2 lines			
Dot structure		12 dots X 16 dots			
Kinds of character		28 kinds			
Kinds of character sizes		3 kinds			
Color	Kind of colors	1 screen; 4 kinds, maximum 7 kinds			
000	Coloring unit	A character			
Display extension		Possible (multiline display)			
Raster coloring		Possible (maximum 7 kinds)			

Table 4.5.5 Outline of CRT display function

Fig. 4.5.10 CRT display circuit block diagram

4.5 Functional description

(1) Memory for display

There are 2 types of display memory: CRT display ROM (addresses 10000₁₆ to 10FFF₁₆) and CRT display RAM (addresses 0600₁₆ to 06B3₁₆). Each type of display memory is described below.

■ CRT display ROM (addresses 10000₁₆ to 10FFF₁₆)

CRT display ROM has a capacity of 4 K bytes. Since 32 bytes are required for 1 character data, the ROM can stores up to 128 kinds of characters.

CRT display ROM is broadly divided into 2 areas. The [vertical 16 dots] X [horizontal (left side) 8 dots] data of display characters are stored in addresses 10000_{16} to $107FF_{16}$; the [vertical 16 dots] X [horizontal (right side) 4 dots] data of display characters are stored in addresses 10800_{16} to $10FFF_{16}$ (refer to "**Figure 4.5.11**"). Note however that the high-order 4 bits of the data to be written to addresses 10800_{16} to $10FFF_{16}$ must be set to "1" (by writing data FX_{16}).

Fig. 4.5.11 Example of display character data storing form

4.5 Functional description

The character code used to specify a display character is determined based on the address in the CRT display ROM in which that character data is stored.

Assume that 1 character data is stored in addresses 10XX0₁₆ to 10XXF₁₆ (XX denotes 00₁₆ to 7F₁₆) and 10YY016 to 10YYF16 (YY denotes "XX+80016"), then the character code is "XX16." In other words, a character code is constructed with the low-order second and third digits (hexadecimal notation) of the 5-digit address (10000₁₆ to 107FF₁₆) where that character data is stored.

A character code is "YY16" in addresses 1100016 to 11FFF16. Table 4.5.6 shows the character code table.

Character code	Character data stored address					
	Left side 8 dots	Right 4 side 8 dots				
0016	10000 ₁₆ to 1000F ₁₆	1080016 to 1080F16				
0116	10010 ₁₆ to 1001F ₁₆	1081016 to 1081F16				
0216	1002016 to 1002F16	1082016 to 1082F16				
0316	10030 ₁₆ to 1003F ₁₆	1083016 to 1083F16				
:	:	:				
7E ₁₆	107E016 to 107EF16	10FE016 to 10FEF16				
7F ₁₆	107F0 ₁₆ to 107EF ₁₆	10FF016 to 10FFF16				
■ CRT display RA	A (addresses 0600₁₀ to 06B3₁₀)	A ST CN				

Table 4.5.6 Character code table (be omitted partly)

■ CRT display RAM (addresses 0600₁₆ to 06B3₁₆)

CRT display RAM is assigned to addresses 060016 to 06B316. Table 4.5.7 shows the contents of CRT display RAM.

Table 4.5.7 Contents of CRT display RAM

Block number	Display position (from left side)	Character code specifying	Color specifying
	1st character	060016	068016
	2nd character	060116	0681 ₁₆
	3rd character	060216	068216
Block 1		:	:
	18th character	061116	069116
	19th character	061216	069216
	20th character	061316	069316
		061416	069416
Not used		to	:
		061F ₁₆	069F ₁₆
	1st character	062016	06A0 ₁₆
	2nd character	062116	06A1 ₁₆
	3rd character	062216	06A2 ₁₆
Block 2	:	:	:
	18th character	063116	06116
	19th character	063216	06216
	20th character	063316	06316

Fig. 4.5.12 Structure of CRT display RAM

4.5 Functional description

The different CRT display function-related registers from those of M37221M6-XXXSP/FP are shown in the following pages.

Fig. 4.5.13 Border selection register (addresses 00E5₁₆)

Fig. 4.5.14 Color register n (addresses 00E616 to 00E916)

Fig. 4.5.15 CRT control register (address 00EA₁₆)

Fig. 4.5.16 CRT port control register (address 00EC₁₆)

4.5 Functional description

4.5.7 Internal state immediately after reset

Figures 4.5.17 and 4.5.18 show the internal state immediately after reset.

■SFR Area (addresses C016 to DF16)			
	<state after="" immediately="" reset=""></state>		
	0 : "0" immediately after reset		
	2 : Undefined immediately		
Address Register	State immediately after reset		
C016 Port P0 (P0)	?		
C1 ₁₆ Port P0 direction register (D0)	0016		
C2 ₁₆ Port P1 (P1)	3		
C3 ₁₆ Port P1 direction register (D1)	0016		
C4 ₁₆ Port P2 (P2)	?		
C516 Port P2 direction register (D2)			
C616 Port P3 (P3)			
C7 ₁₆ Port P3 direction register (D3)			
	2		
C916			
CB16 Port P5 direction register (D5)	0016		
CC16	?		
CD ₁₆ Port P3 output mode control register (P3S)	0016		
CE ₁₆ DA-H register (DA-H)	?		
CF ₁₆ DA-L register (DA-L)	0 0 ? ? ? ? ? ? ?		
D0 ₁₆ PWM0 register (PWM0)	?		
D1 ₁₆ PWM1 register (PWM1)	?		
D2 ₁₆ PWM2 register (PWM2)	?		
D3 ₁₆ PWM3 register (PWM3)	?		
D416 PWM4 register (PWM4)			
D_{016} P with output control register 1 (PW) D616 PWM output control register 2 (PN)	0016		
DO_{16} F with output control register 2 (PN)	?		
D816	?		
D916	?		
DA ₁₆	?		
DB16	?		
DC16 Serial I/O mode register (SM)	0016		
DD ₁₆ Serial I/O regsiter (SIO)	?		
DE ₁₆ DA1 conversion register (DA1)			
DF ₁₆ DA2 conversion register (DA2)	0 0 ? ? ? ? ? ? ? ?		
Fig. 4.5.17 Internal state immediately after reset (1)			

■SFR Area (addresses E016 to FF16)			
	<state after="" immediately="" reset=""></state>		
	0: "0" immediately after reset		
	. "4" immediately ofter react		
	? : Undefined immediately		
	atter reset		
Address Register	State immediately after reset b7 b0		
E016 Horizontal position register (HR)	0016		
E1 ₁₆ Vertical position register 1 (CV1)	0 ? ? ? ? ? ? ?		
E2 ₁₆ Vertical position register 2 (CV2)	0 ? ? ? ? ? ? ?		
E316	?		
E4 ₁₆ Character size register (CS)			
E516 Border selection register (MD)			
E616 Color register 0 (CO0)			
E716 Color register 1 (CO1)	0016		
E_{016} Color register 2 (CO2)	0016		
E416 CRT control register (CC)	0016		
EB16	?		
EC16 CRT port control register (CRTP)	0016		
ED16 CRT clock selection register (CK)	0016		
EE ₁₆ A-D control register 1 (AD1)	0 0 0 ? 0 0 0 0		
EF ₁₆ A-D control register 2 (AD2)	0016		
F0 ₁₆ Timer 1 (TM1)	FF16		
F1 ₁₆ Timer 2 (TM2)			
F2 ₁₆ Timer 3 (TM3)	0716		
F 316 TIMEr 4 (TM4) E 44c Timer 12 mode register (T12M)	0016		
F516 Timer 34 mode register (T34M)	0016		
F6 ₁₆ PWM5 register (PWM5)	?		
F716	?		
F816	?		
F9 ₁₆ Interrupt input polarity register (RE)	0 0 0 0 0 0 0 ?		
FA ₁₆ Test register (TEST)	0016		
FB ₁₆ CPU mode register (CPUM)			
FC_{16} Interrupt request register 1 (IREQ1)			
FD16 Interrupt request register 2 (IREQ2)	0016		
FE16 Interrupt control register 1 (ICON1)	0016		
Fig. 4.5.18 Internal state immediately after reset (2)			

4.6 Electrical characteristics

4.6 Electrical characteristics

Absolute maximum ratings

Symbol	Para	ameter	Conditions	Ratings	Unit
Vcc	Power source voltage	Vcc	All voltages are	-0.3 to 6	V
Vi	Input voltage	CNVss	based on Vss.	-0.3 to 6	V
Vi	Input voltage	P00-P07,P10-P17, P20-	Output transistors	-0.3 to Vcc + 0.3	V
		P27, P30-P34, OSC1, XIN,	are cut off.		
		Hsync, Vsync, RESET			
Vo	Output voltage	P06, P07, P10-P17, P20-		-0.3 to Vcc + 0.3	V
		P27, P30-P32, R, G, B,			
		OUT, D-A, Xout, OSC2			
Vo	Output voltage	P00-P05		-0.3 to 13	V
Іон	Circuit current	R, G, B, OUT, P10-P17,		0 to 1 (Note 1)	mA
		P20-P27, P30, P31, D-A			
	Circuit current	R, G, B, OUT1, P06, P07,		0 to 2 (Note 2)	mA
		P10-P17, P20-P23, P30-			
		P32, D-A			
OL2	Circuit current	P00-P05	3	0 to 1 (Note 2)	mA
Іоіз	Circuit current	P24-P27	7. 34	🔍 0 to 10 (Note 3)	mA
Pd	Power dissipation		27 6	550	mW
Topr	Operating temperature		Ta = 25 °C	-10 to 70	°C
Tstg	Storage temperature		CO.	-40 to 125	°C

Notes 1: The total current that flows out of the IC must be 20 mA (max.).

2: The total input current to IC (IOL1 + IOL2) must be 30 mA or less.

3: The total average input current for ports P24-P27 to IC must be 20 mA or less.

4.6 Electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Power source voltage (Note 4), During CPU, CRT operation	4.5	5.0	5.5	V
Vss	Power source voltage	0	0	0	V
VIH	HIGH input voltage P00–P07,P10–P17, P20–P27,	0.8Vcc		Vcc	V
	P30-P34, SIN, SCLK, HSYNC,				
	VSYNC, RESET, XIN, OSC1,				
	TIM2, TIM3, INT1, INT2, INT3				V
VIL1	LOW input voltage P00-P07,P10-P17, P20-P27,	0		0.4Vcc	V
	P30-P34				
VIL2	LOW input voltage HSYNC, VSYNC, RESET, TIM2,	0		0.2Vcc	V
	TIM3, INT1, INT2, INT3, X _{IN} ,				
	OSC1, SIN, SCLK				
Іон	HIGH average output current (Note 1) R, G, B, OUT, D-A, P10-P17,			1	mA
	P20-P27, P30, P31				
OL1	LOW average output current (Note 2) R, G, B, OUT, D-A, P06, P07,			2	mA
	P10-P17, P20-P27, P30-P32				
OL2	LOW average output current (Note 2) P00-P05			1	mA
OL3	LOW average output current (Note 3) P24-P27			10	mA
f(XIN)	Oscillation frequency (for CPU operation) (Note 5) X	7.9	8.0	8.1	MHz
fcrt	Oscillation frequency (for CRT display) (Note 5) OSC1	5.0		8.0	MHz
f hs1	Input frequency			100	kHz
f hs2	Input frequency Sclk			1	MHz

Recommended operating conditions (T_a = -10 °C to 70 °C, V_{cc} = 5 V ± 10 %, unless otherwise noted)

Notes 1: The total current that flows out of the IC must be 20 mA (max.).

2: The total input current to IC (IOL1 + IOL2) must be 30 mA or less.

3: The total average input current for ports P24-P27 to IC must be 20 mA or less.

4: Connect 0.1 μ F or more capacitor externally across the power source pins Vcc–Vss so as to reduce power source noise. Also connect 0.1 μ F or more capacitor externally across the pins Vcc–CNVss.

5: Use a quartz-crystal oscillator or a ceramic resonator for the CPU oscillation circuit.

4.6 Electrical characteristics

	_		T			Limits		Lloit
Symbol	Param	ieter	Test cond	ditions	Min.	Тур.	Max.	Unit
Icc	Power source current	System operation	Vcc = 5.5 V,	CRT OFF		20	40	mA
			$f(X_{IN}) = 8 MHz$	CRT ON		30	60	
		Stop mode	$V_{cc} = 5.5 V, f($	Xin) = 0			300	μA
Vон	HIGH output voltage	R, G, B, OUT, D-A,	Vcc = 4.5 V		2.4			V
		P10-P17, P20-P27,	Iон = -0.5 mA					
		P30, P31						
Vol	LOW output voltage	R, G, B, OUT, D-A,	Vcc = 4.5 V				0.4	V
		P00-P07, P10-P17,	lo∟ = 0.5 mA					
		P20-P23, P30-P32						
	LOW output voltage	P24-P27	Vcc = 4.5 V				3.0	
			lo∟ = 10.0 mA					
VT+-VT-	Hysteresis RESET		Vcc = 5.0 V			0.5	0.7	V
	Hysteresis (Note)	Hsync, Vsync, TIM2,	Vcc = 5.0 V			0.5	1.3	
		TIM3, INT1, INT2,						
		INT3, SIN, SCLK						
lіzн	HIGH input leak current	RESET, P00-P07,	Vcc = 5.5 V				5	μA
		P10-P17, P20-P27,	$V_1 = 5.5 V$	C				
		P30-P34, Hsync,	3.					
		VSYNC						
IIZL	LOW input leak current	RESET, PO0-PO7,	$V_{cc} = 5.5 V$				5	μA
		P10-P17, P20-P27,	$V_1 = 0 V$					
		P30-P34, HSYNC,						
		VSYNC						
Іогн	HIGH output leak current	P00-P05	Vcc = 5.5 V				10	μA
			Vo = 12 V					

Electric characteristics (Vcc = 5 V \pm 10 %, Vss = 0 V, f(X_{IN}) = 8 MHz, T_a = -10 °C to 70 °C, unless otherwise noted)

Note: P06, P07, P15, P23 and P24 have the hysteresis when these pins are used as interrupt input pins or timer input pins. P20–P22 have the hysteresis when these pins are used as serial I/O pins.

4.6 Electrical characteristics

A-D Comparator characteristics

(Vcc = 5 V \pm 10 %, Vss = 0 V, f(XiN) = 8 MHz, Ta = -10 °C to 70 °C, unless otherwise noted)

0	nbol Parameter Test cor	Toot conditions	Limits			Linit
Symbol			Min.	Тур.	Max.	Onit
_	Resolution				6	bits
	Absolute accuracy		0	±1	±2	LSB

Note: When VCC = 5 V, 1 LSB = 5/64 V.

D-A Converter characteristics

(Vcc = 5 V \pm 10 %, Vss = 0 V, f(XiN) = 8 MHz, Ta = -10 °C to 70 °C, unless otherwise noted)

Symbol Parameter	Description	Toot conditions		Linit		
	Test conditions	Min.	Тур.	Max.		
_	Resolution				6	bits
_	Absolute accuracy				2	%
tsu	Setting time				3	μs
Ro	Output resistor		1	2.5	4	kΩ

· com.cn

4.7 Standard characteristics

4.7 Standard characteristics

The data described in this section are characteristic examples. Refer to "4.6 Electrical characteristics" for rated values.

4.7 Standard characteristics

Ports P10–P17, P20–P23, P30, P31 and D-A
 (a) IOL–VOL characteristics

HIGH level output voltage VOH [V]

4.7 Standard characteristics

- 4. Ports P24-P27
 - (a) IOL-VOL characteristics

4.7 Standard characteristics

5. Ports P52-P55

HIGH level output voltage VOH [V]

CHAPTER 5 APPLICATION

- 5.1 Example of multi-line display
- 5.2 Notes on programming for OSD (M37220M3-XXXSP/FP)
- 5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)
 - 5.4 Example of I²C-BUS interface control (M37221Mx-XXXSP/FP)
 - 5.5 Example of I²C-BUS interface control by software (M37220M3-XXXSP/FP)
 - 5.6 Application circuit example

APPLICATION 5.1 Example of multi-line display

5.1 Example of multi-line display

The M37221Mx-XXXSP/FP is used as a general example in describing this application for the 7220 group. The M377221Mx-XXXSP/FP ordinarily displays 2 lines on a CRT screen by displaying 2 blocks at different vertical positions. In addition to this, it can display 3 lines or more (multi-line display) by rewriting both character data and display positions during interrupt processing, using CRT interrupts. An example of the software processing for implemention this multi-line display is described below. This example is 12-line multi-line display using blocks 1 and 2.

For CRT display details, refer to "2.11 CRT display function."

5.1.1 Specifications

- ●Pins required: R, G, B, OUT1, Hsync, and Vsync
- ●HsyNc/VsyNc input polarity: positive polarity input
- ●R/G/B/OUT1 output polarity: positive polarity output
- Character colors: red, blue, white, and cyan
- No character background color
- Bordering (OUT) is available
- Character size: minimum size
- ●12-line display

5.1.2 Connection example

Fig. 5.1.1 Connection example

Fig. 5.1.2 Display example

5.1 Example of multi-line display

5.1.3 General flowchart

The multi-line display processing routine consists of initialization processing routine, V_{SYNC} interrupt processing routine, and CRT interrupt processing routine.

(1) Initialization processing routine

This routine is used to initialize to cause a CRT interrupt.

APPLICATION 5.1 Example of multi-line display

(2) VSYNC interrupt processing routine

The V_{SYNC} interrupt processing routine consists of; multi-line display start processing and multi-line display correction processing. The correction processing corrects erroneous multi-line display due to various influences.

Fig. 5.1.4 Flowchart of VSYNC interrupt processing routine

5.1 Example of multi-line display

(3) CRT interrupt processing routine

The CRT interrupt processing routine executes the display character data setup routine for each line, in order to perform multi-line display. The line to be displayed is determined by the line counter value.

Fig. 5.1.5 Flowchart of CRT interrupt processing routine

APPLICATION

5.1 Example of multi-line display

5.1.4 Set of display character data

To display the character data, set the character codes (" 00_{16} " to "FF₁₆") in the character addresses (block 1: addresses 0600_{16} to 0617_{16} , block 2: addresses 0620_{16} to 0637_{16}). Also, set the color register specifying (" 00_2 " to " 11_2 ") in the color addresses (block 1: addresses 0680_{16} to 0697_{16} , block 2: addresses $06A0_{16}$ to $06B7_{16}$).

Character code (" <u>0016" to "FF16</u> ")			
Character addresses	060016 060116	061616	061716
			Block 1
Color addresses	068016 068116	069616	069716
Color register specifying ("002" to "112")		24 characters	
Character code (" <u>00116" to "FF16</u> ") ↓ Character addresses	062016 062116	063616	063716 Block 2
Color addresses	06A016 06A116	06B616	06B716
Color register specifying ("002" to "112")		24 characters	
Fig. 5.1.6 Set of display char	acter data		

APPLICATION

5.1 Example of multi-line display

5.1.5 Line counter

The line counter determines which line of display data is to be set. For example, if a CRT interrupt occurs at the end of the first line display, the line counter value will be "2." Therefore, the 3rd line display data must be set from the end of the 1st line display to the start of the 3rd line display. Then, the line counter value is incremented and becomes "3."

Figure 5.1.7 shows the example of the setup timing for the line counter and the display character data.

APPLICATION 5.1 Example of multi-line display

5.1.6 Processing time

When setting display data by a CRT interrupt, the processing time is limited.

As shown in Figure 5.1.7, a CRT interrupt occurs at the end of the first line (block 1) display and setting for the 3rd line display is started. This setting must be completed before a scanning line reaches to the 3rd line display position. If the setting is not completed, display characters flicker or rewriting is looked. And also, for multi-line display of 12 lines, be sure that CRT interrupts occur 12 times from a V_{SYNC} to the next V_{SYNC}. If CRT interrupts do not occur as many times as the number of display lines, the following causes can be assumed.

- Display position overlaps.
- CRT interrupt processing time is too long, resulting in no display of that line (2 lines after the line being displayed).

For example, a CRT interrupt occurs at the end of the second line display in Figure 5.1.7. Within this interrupt processing, setting for the 4th line display is completed. However, if a scanning line is over the display position of the 4th line (that is, (2)) in Figure 5.1.7) during this setting, one CRT interrupt request is deleted (or does not occur). Therefore, the line counter value is disordered and multi-line display is not displayed correctly. In such cases, due to whatever causes, correct the value with processing (of V_{SYNC} interrupt processing (refer to "**Figure 5.1.4**"). When the CRT interrupt software processing overtime causes this state, change the display positions or shorten the CRT interrupt software processing time.

运 3 港 ^编 在n 。COM·CN

5.1 Example of multi-line display

5.1.7 Set of multiple interrupts

(1) When not setting multiple interrupts

When two or more interrupt requests occur at the same sampling point, the interrupt with the higher priority (refer to "2.5 Interrupts, Table 2.5.1") is received. This priority level is determined by hardware but various priority processing by software can be executed using the interrupt enable bit and each interrupt disable flag (I).

Assume, for example, that all interrupts (CRT, V_{SYNC} , Timer 1) are enabled. When the multiple interrupt is not set, these interrupt request bits are set to "1" and the interrupts are determined by hardware as follows:

①CRT interrupt

^②VsyNC interrupt

3 Timer 1 interrupt

Figure 5.1.8 shows the timing of interrupt processing when not setting multiple interrupts.

The I flag is set to "1" (all interrupts are disabled) automatically by hardware as soon as the interrupt processing starts. Unless the I flag is cleared to "0," other interrupt will not occur during the interrupt processing.

Fig. 5.1.8 Timing of interrupt processing when not setting multiple interrupts

(2) When setting multiple interrupts

Various priority processings are executed by enabling multiple interrupts and by setting priorities by software. For example, to set the priority listed below;

①Timer 1 interrupt
②V_{SYNC} interrupt
③CRT interrupt

execute the following process:

Set only interrupt enable bits (ICON1, ICON2) whose priorities are higher than the current interrupt, and enable the interrupt disable flag (I) in only the current interrupt processing routine.

Figure 5.1.9 shows the timing when all interrupt request bits (CRT, V_{SYNC}, Timer 1) are "1" at the same sampling point.

Note: When setting multiple interrupts, be sure to determine priority levels to prevent occurrence of plural interrupts with the same priority level.

Fig. 5.1.9 Timing when all interrupt request bits are "1" at the same sampling point

5.1 Example of multi-line display

(3) CRT interrupt processing routine when setting multiple interrupts

Figure 5.1.10 shows the flowchart of CRT interrupt processing routine when setting multiple interrupts. (a) and (b) are the setting routines for multiple interrupts.

Fig. 5.1.10 Flowchart of CRT interrupt processing routine (when setting multiple interrupts)

(4) V_{SYNC} interrupt processing routine when setting multiple interrupts

Figure 5.1.11 shows the flowchart of V_{SYNC} interrupt processing routine when setting multiple interrupts. (A) and (B) are the setting routines for multiple interrupts.

Fig. 5.1.11 Flowchart of V_{SYNC} interrupt processing routine (when setting multiple interrupts)

5.2 Notes on programming for OSD (M37220M3-XXXSP/FP)

The emulator MCU M37221ERSS is used for programming development with the M37220M3-XXXSP/FP. However, the functions of the M37221ERSS are compatible with those of the M37221Mx-XXXSP/FP, and therefore has some functions which the M37220M3-XXXSP/FP does not have. Note the following differences when programming using the M37220M3-XXXSP/FP.

5.2.1 Setting of color registers

The color registers of M37220M3-XXXSP/FP are different from those of M37221ERSS (refer to "**Figures 5.2.1 and 5.2.2**"). Character background colors can be output when programming with the M37221ERSS, but not with the M37220M3-XXXSP/FP mask version. This character background color program does not operate on the M37220M3-XXXSP/FP and therefore, it cannot output character background colors (except character background colors by OUT signal; bit 5).

Fig. 5.2.1 Color register n (M37221ERSS)

5.2 Notes on programming for OSD (M37220M3-XXXSP/FP)

Fig. 5.2.2 Color register n (M37220M3-XXXSP/FP)

5.2.2 Setting border selection register

The M37220M3-XXXSP/FP can output neither character background (OUT) nor border at the same time. When setting the border selection bits (bit 0 or 2) to "1," the border output takes over OUT (setting of bit 5 of the color registers). Therefore, select either the character background output or the border output.

Fig. 5.2.3 Border selection register (M37220M3-XXXSP/FP)

5.2.3 Number of display characters

The M37221ERSS can display up to 24 characters in each block. However, the M37220M3-XXXSP/FP can display only up to 20 characters in each block. Note this when programming using the M37220M3-XXXSP/ FP.

5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)

5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)

Application example using the ROM correction function is described below. In this example, it is assumed that the program must be changed by specifications modification after completion of ROM mask. Also, E²PROM is connected to this system.

5.3.1 Connection example

5.3.2 Correction example

The following is an example when 2 addresses (2 blocks) of ROM are corrected.

(1) Correction example 1

PI	ogram before co	prrection		Correction program			m
Address	Machine	Description style		Address	Machine	D	escription style
	instructions			(block 1)	instructions		
E120	/// A900 ///	LDA #00H 🚫		02C0	A980	\\ LDA	#80H \\\\\\\
E122	3A	NINC A		02C2	1A 🔣	\\`DEC	//////// A
E123	///`8D1101 ///	📉 STA 0111H 📉		<u>02C3 \//</u>	8D1201	<u>\\STA</u>	0112H \\\\\\\
E126	60	RTS	·	<u>02C6 \//</u>	<u> 1A </u>	<u>NDEC</u>	A <u> </u>
			· · · ·	<u>02C7 ///</u>	8D1301	<u>NDEC</u>	0113H //////
				02CA	4C26E1	JMP	E126H ① (See no

Fig. 5.3.2 Correction example (1)

5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)

(2) Correction example 2

The loop processing is performed between @ and @ in Figure 5.3.3. Two examples of this part are shown in detail. Example A corrects in loop units and example B corrects only error instructions. Examples A and B are the same operation, differing in processing time and correction bytes only. Depending on the contents of loop processing, it may be preferable to include correct codes with the codes to be corrected, simplifying the correction program and making it easier to read.

When omitting FE96H (\circledast) and correcting from FE98H, the program cannot move to FE96H by the **BPL** instruction (the jump destination addresses of the **BPL** instruction are limited to bytes between -128 and +127). Therefore, the example B is provided.

P	Program before co	orrection			Correction pr	ogram
Address	Machine	Description style		Address	Machine	Description style
	instructions			(block 2)	instructions	
FE96	9525	STA 025H. X ด 🔪		02F0	9525	STA 025H X @
FE98	X// CA	DEX	N,	02E2	9D2501	STA 0125H X
FE99	10FB	BPL 0FE96H 3		02E5	X/// 3A	NINC A
R X	1111. 111 4	(See note 2)	N.	02E6	X CA	DEX
FE9B	60	RTS		02E7	10F7	BPL 02E0H (See note 2)
				02E9	60	RTS (See note 1)
			132	Example B	N-0.	
				0	Correction pr	ogram
				Address	Machine	Description style
				(block 2)	instructions	
				02E0	<u>)) 9D2501))</u>	STA 0125H, X
				02E3	<u>)// 3A _///</u>	
			``````````````````````````````````````	02E4	<u>x^`CA ////</u>	DEX
				02E5	x; 3003	BMI 02EAH (See note 2)
			``	02E7	<u>x 4C96FE ////</u>	V JMP FE96H
				02EA	4C9BFE	
					<u> </u>	I (See note 1)
Notes 1: In In ev As 2: B	①, FE9BH is spe this example, sir ren if <b>RTS</b> is used a result, the nur <b>PL</b> and <b>BMI</b> , as r dresses as brand	ecified as the return de nee the instruction at th d instead of <b>JMP</b> , the mber of bytes is reduce machine instructions, h ch destinations.	stination addre le return destin operation is the ed. ave no absolut	ss of <b>JMP</b> ation addre same as th re addresse	ss is <b>RTS</b> , hat of <b>JMP</b> . s, but relative	

# 5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)

## 5.3.3 E²PROM map

Figures 5.3.4 and 5.3.5 show the E²PROM map when using the ROM correction function. To store correction codes by using both ROM correction functions 1 and 2, the capacity of E²PROM needs to be approximately 70 bytes.

E ² PROM address	Contents	Stored data (Machine instruction)	Instructions in correction program
00016	ROM correction function 1 Valid/invalid (55H: valid, others: invalid)	55H	
00116	ROM correction function 1 Execution address (high-order)	E1H	
00216	ROM correction function 1 Execution address (low-order)	20H	
00316	ROM correction function 1 Correction code 1	//////A9H_///////	LDA #80H
00416	ROM correction function 1 Correction code 2	80Н	
00516	ROM correction function 1 Correction code 3		DEC A
00616	ROM correction function 1 Correction code 4		STA 0112H
00716	ROM correction function 1 Correction code 5	112H	
00816	ROM correction function 1 Correction code 6	01Н /////	
00916	ROM correction function 1 Correction code 7		
00A16	ROM correction function 1 Correction code 8	BDH	STA 0113H
00B16	ROM correction function 1 Correction code 9	13H	
00C16	ROM correction function 1 Correction code 10	01H	
00D16	ROM correction function 1 Correction code 11	4CH	JMP E126H
00E16	ROM correction function 1 Correction code 12	26H	
00F16	ROM correction function 1 Correction code 13	E1H	
01016	ROM correction function 1 Correction code 14	EAH	NOP (see note)
01116	ROM correction function 1 Correction code 15	EAH	NOP
01216	ROM correction function 1 Correction code 16	EAH	NOP
01316	ROM correction function 1 Correction code 17	EAH	NOP
01416	ROM correction function 1 Correction code 18	EAH	NOP
01516	ROM correction function 1 Correction code 19	EAH	NOP
01616	ROM correction function 1 Correction code 20	EAH	NOP
01716	ROM correction function 1 Correction code 21	EAH	NOP
01816	ROM correction function 1 Correction code 22	EAH	NOP
01916	ROM correction function 1 Correction code 23	EAH	NOP
01A16	ROM correction function 1 Correction code 24	EAH	NOP
01B16	ROM correction function 1 Correction code 25	EAH	NOP
01C16	ROM correction function 1 Correction code 26	EAH	NOP
01D16	ROM correction function 1 Correction code 27	EAH	NOP
01E16	ROM correction function 1 Correction code 28	EAH	NOP
01F16	ROM correction function 1 Correction code 29	EAH	NOP
02016	ROM correction function 1 Correction code 30	4CH	JMP YYXXH
02116	ROM correction function 1 Correction code 31	ХХН	Set reset vector address to YYXXH
02216	ROM correction function 1 Correction code 32	YYH	(see note).

**Note:** When operating normally, this instruction is not executed. This is a redundant processing to reset during program runaway.

### Fig. 5.3.4 E²PROM map when using ROM correction function (1)

# 5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)

E ² PROM address	Contents		Stored data (Machine instruction)	Instru correctio	ctions in on program		
02316	ROM correction function 2 Valid/i (55H: valid, others: invalid)	nvalid	55H				
02416	ROM correction function 2 Execution address (high-order)		FEH				
02516	ROM correction function 2 Execution address (low-order)		96H				
02616	ROM correction function 2 Correct	ction code 1	/////95H ,///////	LDA	025H, X	$\mathcal{A}$	
02716	ROM correction function 2 Correct	ction code 2	/////25H //////				
02816	ROM correction function 2 Correct	ction code 3	/////9DH.//////		0125H, X		
02916	ROM correction function 2 Correct	ction code 4	/////25H //////				
02A16	ROM correction function 2 Correct	ction code 5	//////////////////////////////////////				Refer to
02B16	ROM correction function 2 Correct	ction code 6		INC	/////// A	/"F	Figure 5.3.
02C16	ROM correction function 2 Correct	ction code 7				e	example A
02D16	ROM correction function 2	ction code 8		BPL	02E0H		
02E16	ROM correction function 2	ction code 9	F7H				
02F16	ROM correction function 2	ction code 10		RTS			
03016	ROM correction function 2 Correct	ction code 11	EAH	NOP (	(see note)		
03116	ROM correction function 2 Correc	ction code 12	EAH	NOP	<u> </u>		
03216	ROM correction function 2 Correct	ction code 13	EAH	NOP			
03316	ROM correction function 2 Correction	ction code 14	EAH	NOP			
03416	ROM correction function 2 Correct	ction code 15	EAH	NOP			
03516	ROM correction function 2 Correct	ction code 16	EAH	NOP			
03616	ROM correction function 2 Correc	ction code 17	EAH	NOP			
03716	ROM correction function 2 Correc	ction code 18	EAH	NOP			
03816	ROM correction function 2 Correc	ction code 19	EAH	NOP			
03916	ROM correction function 2 Correc	ction code 20	EAH	NOP			
03A16	ROM correction function 2 Correct	ction code 21	EAH	NOP			
03B16	ROM correction function 2 Correct	ction code 22	EAH	NOP			
03C16	ROM correction function 2 Correct	ction code 23	EAH	NOP			
03D16	ROM correction function 2 Correc	ction code 24	EAH	NOP			
03E16	ROM correction function 2 Correc	ction code 25	EAH	NOP			
03F16	ROM correction function 2 Correc	ction code 26	EAH	NOP			
04016	ROM correction function 2 Correc	ction code 27	EAH	NOP			
04116	ROM correction function 2 Correc	ction code 28	EAH	NOP			
04216	ROM correction function 2 Correc	ction code 29	EAH	NOP			
04316	ROM correction function 2 Correc	ction code 30	4CH	JMP Y	(YXXH		
04416	ROM correction function 2 Correc	ction code 31	ХХН	Set res	et vector		
04516	ROM correction function 2 Correc	ation code 22	VVU				

**Note:** When operating normally, this instruction is not executed. This is a redundant processing to reset during program runaway.

## Fig. 5.3.5 E²PROM map when using ROM correction function (2)

## 5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)

### 5.3.4 General flowchart

Figure 5.3.6 shows the general flowchart when using ROM correction function. E²PROM addresses in the flowchart corresponds to E²PROM map (refer to "Figures 5.3.4 and 5.3.5").



## 5.3 Usage example of ROM correction function (M37221M8/MA-XXXSP)

## 5.3.5 Notes on use

When using the ROM correction function, note the following.

- •Specify the first address (op code address) of each instruction as the ROM correction address.
- •Use the **RTS**, **RTI** or **JMP** instruction (total of 3 bytes) to return from the correction program to the main program.
- ●Do not set the same address to ROM correction addresses 1 and 2 (addresses 0217₆ to 021A₁₆).



# 5.4 Example of I²C-BUS interface control (M37221Mx-XXXSP/FP)

The M37221Mx-XXXSP/FP has multi-master I²C-BUS interface. This interface, offering both arbitration lost detection and synchronous functions, is useful for the multi-master serial communications.

This paragraph explains transmit/receive control example of E²PROM (M6M80012P) adaptable to the I²C-BUS interface.

For details on the I²C-BUS interface, refer to "2.8 Multi-master I²C-BUS interface."

### 5.4.1 Specifications

- E²PROM required: M6M80012P
- Synchronous clock: internal clock
- Standard clock mode: 100 kHz
- Number of transfer bits: 8 bits
- Data format: addressing format
- Pins required: SCL1, SDA1
- Direction of data transfer: MSB first

#### 5.4.2 Connection example



Fig. 5.4.1 Connection example

# 5.4 Example of I²C-BUS interface control (M37221Mx-XXXSP/FP)

## 5.4.3 E²PROM functions

### (1) Byte write

Bytes are written by sending the START condition, slave address "A016," sub-address (1 byte), data (1 byte), and the STOP condition from the master. Writing to the  $E^2PROM$  will be started after the master sends the STOP condition, that is, in synchronization with a rising edge of the SDA signal. This writing will be automatically terminated by the on-chip sequential controller. In this period, no acknowledge bits are generated.

Figure 5.4.2 shows the byte write timing.



## Fig. 5.4.2 Byte write timing

#### (2) Random address read

In this mode, the data of an arbitrary address is read. To set the first-read address, the master sends the START condition, slave address "A016," and sub-address (1 byte). Upon receiving the acknowledge bit (ACK) from the E²PROM, the master sends the RESTART condition signal and slave address "A1₁₆" again. After ACK is generated from the E²PROM, the data of the corresponding sub-address is read out.

After the data is output, no acknowledge bits are generated, but the STOP condition is sent by the master, completing this read operation.



Fig. 5.4.3 Random address read timing

### 5.4.4 General flowchart

The processing routines which controls I²C-BUS devices branch to the write processing routine and the read processing routine. The data output processing routine is used as the common processing routine.

### (1) Write processing routine



# 5.4 Example of I²C-BUS interface control (M37221Mx-XXXSP/FP)

### (2) Read processing routine



Fig. 5.4.5 Flowchart of read processing routine

## (3) Data output processing routine

The data output processing routine is the common routine within the transmit/receive processing routine.



Fig. 5.4.6 Flowchart of data output processing routine

# 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

# 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

Althogh, the M37220M3-XXXSP/FP has no multi-master I²C-BUS interface, it can control single-master I²C-BUS by software. Most TV systems can be controlled in this way.

This paragraph explains transmit/receive control example of a single-chip color TV signal processor (M52340SP) adaptable to the I²C-BUS interface.

### 5.5.1 Specifications

- Single-chip color TV signal processor required: M52340SP
- Number of transfer bits: 8 bits
- Data format: addressing format
- Pins required: P21, P20
- Direction of data transfer: MSB first

### 5.5.2 Connection example



Fig. 5.5.1 Connection example

### 5.5.3 Single-chip color TV signal processor function

### (1) Status read

Status is read by sending the START condition, slave address "BB16." After ACK is generated from the M52340SP, the status data is read out. After the status data is output, any acknowledge bit is not generated, but the STOP condition is sent by the master. Then this read operation is completed.



#### (2) Byte write

Bytes are written by sending the START condition, slave address "BA16," sub-address (1 byte), data (1 byte), and the STOP condition from the master.





# 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

### 5.5.4 General flowchart

### (1) Write processing routine

The processing routine which controls I²C-BUS devices branch to the write processing routine and the read processing routine. The START condition, the STOP condition and the data output processing routine are used as the common processing routine.



Fig. 5.5.4 Flowchart of write processing routine

## 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

## (2) Read processing routine



Fig. 5.5.5 Flowchart of read processing routine

# 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

## (3) Data output processing routine

The data output, the START condition, the STOP condition, and the bus H processing routines are the common routines within the transmit/receive processing routine.



Fig. 5.5.6 Flowchart of data output processing routine

(4) START condition processing routine



Fig. 5.5.7 Flowchart of START condition processing routine

### (5) STOP condition processing routine



Fig. 5.5.8 Flowchart of STOP condition processing routine

#### (6) Bus H processing routine





# 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

## (7) Data input processing routine



Fig. 5.5.10 Flowchart of data input processing routine

(8) Return ACK processing routine



Fig. 5.5.11 Flowchart of return ACK processing routine

## (9) Return NACK processing routine



Fig. 5.5.12 Flowchart of return NACK processing routine

## 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

### 5.5.5 Data setting according to key processing

Examples of the M52340SP settings, corresponding to each actual TV set key input, are described below.

### (1) "Power ON/OFF key" input

- When power supply is supplied to the M52340SP by this input, the data is set to all registers (at sub-addresses "00₁₆" to "13₁₆").
- (2) "Tuning and search-related keys" (CH UP/DOWN key, CH direct selection key) input When tuning, the color system data (refer to "Table 5.5.10") is set according to the determination result of the color system by the status data register (refer to "Table 5.5.1"). Also, the corresponding data is set when the color system search-related keys are input. However, note that the above-mentioned setting is valid only when setting AUTO (bit 5 at sub-address 06₁₆, write data) to "0." When setting to "1," the data is automatically set inside the M52340SP.

When tuning, the data is set as shown in Table 5.5.1.

## (3) "Volume UP/DOWN key" input

When the volume up/down key is input, the data is set as shown in Table 5.5.2.

#### (4) "Screen-size-related keys" input

When the screen-related keys are input on TVs with various screen sizes (wide aspect TV, etc.), the screen size data and position data is set as shown in Table 5.5.3. Also, the data of each frequency (50 Hz or 60 Hz) is occasionally held.

(5) "Picture data control key" and "Picture memory switching key" input

When changing picture data, the data is set to the corresponding write data register as shown in Table 5.5.4.

#### Table 5.5.1 Data setting at tuning and searching

Sub-address	Bit	Data
0216	D5	TRAP
	D4	DBF
	D1	DFA
0616	D0, D1	DL TIME



## Table 5.5.2 Data setting at "volume UP/DOWN key"

🥑 input

Sub-address	Bit	Data
0316	D0 to D6	AUDIO ATT

# Table 5.5.3 Data setting at "screen-size-related keys" input

Sub-address	Bit	Data
0916	D3 to D6	H PHASE

### Table 5.5.4 Data setting at "picture data control key" and "picture memory switching key" input

Sub-address	Bit	Data
0416	D0 to D5	SHARPNESS
0516	D0 to D6	CONTRAST
0716	D0 to D6	TINT
0816	D0 to D6	COLOR
0A16	D0 to D6	BRIGHT

(6) Data setting when changing AFT (auto fine tuning) state

To change the state of auto fine tuning at presetting CH and ordinary tuning, the bit is set as shown in Table 5.5.5.

(7) Data setting when changing audio mute state

When the audio mute key is input, the bit is set as shown in Table 5.5.6. If it is necessary to delete the sound while tuning with the tuning key input or presetting CH, the bit is set as shown in Table 5.5.6.

(8) Data setting when changing video mute state

When muting the video on screen while tuning with the tuning key input, the bit is set as shown in Table 5.5.7.

(9) Data setting when adjusting white balance

When adjusting the TV picture in the factory, set the data shown in Table 5.5.8 to ready the service mode for adjusting the white color.

2

### Table 5.5.5 Data setting when changing AFT state

Sub-address	Bit	Data
0416	D6	DEFEAT

# Table 5.5.6 Data setting when changing audio mute state

Sub-address	Bit	Data
0116	D6	A MUTE

# Table 5.5.7 Data setting when changing video mute state

Sub-address	Bit	Data
0B16	D6	MUTE

Table 5.5.8 Data setting when adjusting white color balance

Sub-address	Bit	Data
1316	D3	SERSW

# 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

### 5.5.6 Flowchart of data setting according to key processing

Figures 5.5.13 to 5.5.15 show the flowcharts of controlling the M52340SP when there are various event inputs to the actual TV system.

### (1) Poweron processing by "power key" input



Fig. 5.5.13 Flowchart of poweron processing

## 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

(2) "CH UP/DOWN key" input processing



Fig. 5.5.14 Flowchart of "CH UP/DOWN key" input processing

# 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

(3) Processing of "picture memory switching key" input



Fig. 5.5.15 Flowchart of "picture memory switching key" input processing

### 5.5.7 Register map

The M52340SP has 2 kinds of registers; the status data register and the write data registers.

## (1) Status data register

The status data register indicates various signal state from the M52340SP side. The state is confirmed by regularly reading each bit.

<u>Status data register</u>					
b7 b6 b5 b4 b3 b2 b1 b0	] SI	tatus data register			
		Name	Functions	After reset	RW
	0	Color system determination bit 0 (CONDITION)	0 : Under determination 1 : Determination is completed	0	R —
	1	Color system determination bit 1 (SECAM)	b2 b1 Image system 0 0 PAL 0 1 SECAM	0	RW
	2	Color system determination bit 2 (NTSC)	1 0 NTSC 1 1 SECAM	0	RW
	3	3.58/4.43 determination bit (3.58)	0 : 4.43 MHz 1 : 3.58 MHz	0	RW
		AFT signal detection bit 0 (AFT0)		0	RW
		AFT signal detection bit 1 (AFT1)	-100kHz fo +100kHz Freq.	0	RW
			D5: AFT1 1 1 0 0 D4: AFT0 1 0 0 1		
	6	Synchronous presence determination bit (COINCIDENCE)	0 : Without synchronization 1 : It is synchronization	0	RW
· · · · · · · · · · · · · · · · · · ·		Frequency determination bit (50/60)	0 : 50 Hz 1 : 60 Hz	0	RW

Fig. 5.5.16 Status data register

## 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)



## 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

## (2) Write data register





## 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

### DELAY ADJ

This adjusts the RF AGC delay point. The output level of tuner decreases when the value increase, the output level increases when the value decreases.

### ■ POS/NEG

This switch sets the VIF output signal to either the positive or the negative modulation signal. When "0," the negative modulation signal is selected; when "1," the positive modulation signal is selected.

### VCO ADJ

This register changes the free running frequency of VIF VCO. The frequency increases when the value increases, the frequency decreases when the value decreases.

### A MUTE

This is the audio mute ON/OFF.

#### ■ 4.5/6.0

This bit must be set to "1" when the sound carrier frequency is 4.5 MHz. Set "0" when the frequency is other values.

#### ■ DFA, DL TIME

In order to adjust the color signal and the luminance signal is delayed using the on-chip delay-line. The DL TIME register adjusts the delay approximately, and the DFA register performes the fine adjustments. When DFA is "1," actual delay time is +50 ns; when "0," it is +0 ns. For relationship between DFA and DL TIME, refer to "Table 5.5.9."

Data	DL	DL	DFA	Actual
	TIME1	TIME0		delay time
0	0	0	0	170 ns
1	0	0	1	120 ns
2	0	1	0	330 ns
3	0	1	1	280 ns
4	1	0	0	410 ns
5	1	0	1	360 ns
6	1	1	0	490 ns
7	1	1	1	440 ns

## Table 5.5.9 Relationship between DFA and DL TIME

#### ■ DBF

The M52340SP has 2 TRAP; the second TRAP extends the bandwidth of the TRAP, described below. DBF is the ON/OFF switch for the second TRAP. When "1," it is on; when "0," it is off. DBF is used in SECAM and other methods.

#### ■ TRAP

This is the TRAP ON/OFF switch for taking out the luminance signal (Y-signal) by Y/C separation (Y = Y-signal, C = color signal) of the composite video signal. When "1," it is on; when "0," it is off.

#### ■ AUDIO ATT

Data is set ("0" to "127") to change the volume.

## ■ SHARPNESS, CONTRAST, TINT, COLOR, BRIGHT

Data is set to change the picture data.

Some TVs have a picture mode function (such as the movie mode, standard mode), the fixed data is set according to the mode. Accordingly, it is necessary to change the picture data when changing the picture mode.

## DEFEAT

This switch turns DEFEAT off when AFT is on, and vice versa.

### ■ TV/EXT

This selects either a TV's signal or an external device's signal. This bit should be set to "0" when TV's signal is selected and set to "1" when an external device's signal is selected.

### ■ AUTO

This determines whether the automatic determination of the color system is used or not. When AUTO is "0," manual determination is set; when "1," determination is performed automatically.

#### ■ 3.58/NTSC/SECAM

When setting AUTO (bit 5 at sub-address 06₁₆, write data) to "1," these bits are automatically set inside the M52340SP. When setting AUTO to "0," it is necessary to set the data shown in Table 5.5.10, according to the color system.

# Table 5.5.10 Setting of color system (at sub-address

$\sim$	Color system	D2	D1	D0			
		3.58	NTSC	SECAM			
	PAL	0	0	0			
	SECAM	0	0	1			
	NTSC3.58	1	1	0			
	NTSC4.43	0	1	0			

#### ■ H PHASE

The picture's horizontal position is adjusted. Data is given every 50 Hz or 60 Hz and the data is set when frequency changes. For wide TVs etc., data is given for each screen size mode, and the data is set when the screen size mode changes.

#### ■ DRIVE R, DRIVE B

Data is used to adjust the output amplitude ratio of R, G and B signals. Since G is the fixed data, its ratio is adjusted by R and B.

#### ■ MUTE

This is the video mute ON/OFF switch.

#### ■ CUT OFF R, CUT OFF G, CUT OFF B

Data is used to adjust the output DC level of R, G and B signals.

#### F TRAP

This register performes the fine adjustments to the trap frequency of TRAP for Y/C separation.
# **APPLICATION**

### 5.5 Example of I²C-BUS control by software (M37220M3-XXXSP/FP)

#### ■ SERSW

This switch is for white balance adjustments of the TV picture in the factory. When SERSW is "0," it is OFF; when "1," it is ON.

#### ■ HST

This switch stops horizontal oscillation. When HST is "0," the oscillation continues; when "1," it stops.

#### ■ AFCG

This switch increases AFC gain. When AFCG is "0," AFC gain is normal; when "1," it is high.



# **PPLICATION**

### 5.6 Application circuit example

## 5.6 Application circuit example

#### 5.6.1 Application circuit example 1



# **APPLICATION**

## 5.6 Application circuit example

#### 5.6.2 Application circuit example 2



# CHAPTER 6 APPENDIX

- 6.1 Package outlines
- 6.2 Termination of unused pins
- 6.3 Notes on use
- 6.4 Countermeasures against noise
  - 6.5 Memory assignment
  - 6.6 SFR assignment
  - 6.7 Control registers
  - 6.8 Ports

3-2

- 6.9 Machine instruction table
- 6.10 Instruction code table
- 6.11 Mask ROM ordering method
- 6.12 Mark specification form

## 6.1 Package outline

## 6.1 Package outline





## 6.2 Termination of unused pins

## 6.2 Termination of unused pins

Table 6.	2.1	Termination	of	unused	pins
----------	-----	-------------	----	--------	------

P	in	Input/	Termination		
M37221Mx-XXXSP/FP	M37220M3-XXXSP/FP	Output	remination		
P00/PWM0-P05/PWM5					
P06/INT2/A-D4	*				
P07/INT1					
P10/OUT2	P10				
P11/SCL1	P11				
P12/SCL2	P12				
P1 ₃ /SDA1	P1 ₃				
P14/SDA2	P14				
P1 ₅ /A-D1/INT3			Set the port direction registers for the input		
P16/A-D2		I/O	mode and pull-down through a resistor		
P17/A-D3					
P20/SCLK			J_		
P21/Sout	*	× 3	A A A A A A A A A A A A A A A A A A A		
P22/SIN					
P2 ₃ /TIM3					
P24/TIM2		132			
P25-P27					
P30/A-D5	P30/A-D5/DA1				
P31/A-D6	P30/A-D6/DA2				
P32	*				
P3 ₃ /OSC1					
P34/OSC2		المعرية	Bull down through a resistor		
HSYNC	*	Input			
VSYNC					
P52/R					
P53/G	*				
P54/B		Outrout	Onen		
P5₅/OUT1	P5₅/OUT	Output			
Хоит					
D-A	*				

* It is the same as M37221Mx-XXXSP/FP.

### 6.3 Notes on use

### 6.3 Notes on use

Notes on programming and equipping when using M37221M6-XXXSP/FP are described below.

#### 6.3.1 Notes on processor status register

(1) Initialization of processor status register The contents of processor status register (PS) are undefined except the I flag (I = "1") immediately after reset. Therefore initialize the flags that affect execution of a program. Especially be sure to initialize the T and D flags because they have an important effect on calculations.



Fig. 6.3.1 Initialization of flags in PS

(2) How to refer to processor status register When referring to the processor status register (PS) contents, execute the PHP instruction to push the processor status register contents into the stack (S) + 1. And then read the contents of stack (S) + 1.

If necessary, execute the **PLP** instruction to pull the pushed PS contents. In that case, be sure to execute the **NOP** instruction immediately after the **PLP** instruction.



Fig. 6.3.2 Stack contents after PHP instruction execution



Fig. 6.3.3 Note when executing PLP instruction

#### 6.3 Notes on use

#### 6.3.2 Notes on decimal operation

- (1) How to execute arithmetic operation instructions in decimal operation mode To calculate in decimal notation, set the decimal operation mode flag (D) to "1" by using the SED instruction, and execute the ADC and SBC instructions. After that, execute at least one instruction to execute the SEC, CLC, or CLD instruction.
- (2) Status flags in decimal operation mode When the ADC or SBC instruction are executed in decimal operation mode (D flag = "1"), the N, V, and Z flags are invalid.

The carry flag (C) is set to "1" when a carry occurs as a result of an arithmetic operation, or is cleared to "0" when a borrow occurs. Therefore, the carry flag can be used to determine whether a carry or a borrow has occurred or not. Be sure to initialize the C flag before each arithmetic operation.

#### 6.3.3 Notes on Interrupts

(1) Executing BBC or BBS instruction When executing the BBC or BBS instruction to an interrupt request bit immediately after this bit is set to "0" by using a data transfer

instruction^{*1}, execute one or more instructions before executing the **BBC** or **BBS** instruction.

#### Reason

If the **BBC** or **BBS** instruction is executed immediately after an interrupt request bit of an interrupt request register is cleared to "0," the value of the interrupt request bit before being cleared to "0" is read.

*1: data transfer instructions: LDM, LDA, STA, STX, and STY instructions







## 6.3 Notes on use

# (2) How to switch an external interrupt detection edge

For the products able to switch the external interrupt detection edge, switch it as Figure 6.3.6.

#### Reason

6.3.4 Notes on serial I/O

6.3.7.

input level.

(1) Initialization for the serial I/O

For the serial I/O interrupt, initialize as Figure

When an external clock is used as the synchronous clock for the clock synchronous

serial I/O, write the transmit data to the serial I/O shift register at HIGH of the transfer clock

(2) Write transmit data to transmit buffer

The interrupt circuit recognizes the switching of the detection edge as the change of external input signals. This may cause an unnecessary interrupt.



Fig. 6.3.7 Initialization for serial I/O

#### 6.3.5 Notes on timer

When a timer value is read, "the timer value at read timing + 1" may be read.

#### Reason

Figure 6.3.8 shows the relation between timer values and their values read. Timer values are changed at the rising edge of the count source, but the values read are counted down at the falling edge of the count source. Therefore, "the timer value + 1" may be read in some read timings.

Figure 6.3.9 shows the relation between timer values and their values read when two 8-bit timers are connected in series. In this example, timers 1 and 2 are connected in series and an overflow signal of timer 1 is used as the count source of timer 2. The timer 2 values read are counted down at the falling edge of the count source. When timers 1 and 2 are used as a single 16-bit counter, the timer 2 values read take the same value at timing A and B (or at timing C and D) as shown in Figure 6.3.9. This is because the count source of timer 2 changes at the falling edge of the count source of timer 1.



= 2, timer 2 setting value = 1)

#### 6.3 Notes on use

#### 6.3.6 Notes on A-D comparator

#### (1) Signal source impedance for analog input

Make the signal source impedance for analog input low, or equip an analog input pin with an external capacitor of 0.01  $\mu$ F to 1  $\mu$ F. Further, be sure to verify the operation of application products on the user side.

#### Reason

An analog input pin includes the capacitor for analog voltage comparison. Accordingly, when signals from signal source with high impedance are input to an analog input pin, charge and discharge noise generates. This may cause the A-D comparison precision to be worse.

#### (2) Note during an A-D conversion

The comparator consists of a capacity coupling, and a charge of the capacity will be lost if the clock frequency is too low. Thus, make sure the following during an A-D comparison.

 $\bullet f(X_{IN})$  is 500 kHz or more

•Do not execute the **STP** instruction and **WIT** instruction

#### 6.3.7 Note on RESET pin

In case where the RESET signal rise time is long, connect a ceramic capacitor or others across the RESET pin and the Vss pin. And use a 1000 pF or more capacitor for high frequency use. When connecting the capacitor, note the following :

•Make the length of the wiring which is connected to a capacitor as short as possible.

•Be sure to check the operation of application products on the user side.

#### Reason

If the several nanosecond or several ten nanosecond impulse noise enters the RESET pin, it may cause a microcomputer failure.

#### 6.3.8 Notes on input and output pins

#### (1) Fix of a port input level in stand-by state

In stand-by state^{*2} for low-power dissipation, do not make input levels of an input port and an I/O port "undefined," especially for I/O ports of the P-channel and the N-channel open-drain.

Pull-up (connect the port to  $V_{cc}$ ) or pull-down (connect the port to  $V_{ss}$ ) these ports through a resistor. When determining a resistance value, note the following points:

- External circuit
- •Variation of output levels during the ordinary operation

When using built-in pull-up or pull-down resistor, note on varied current values.

- •When setting as an input port : fix its input level
- •When setting as an output port : prevent current from flowing out to external

#### Reason

Even when setting as an output port with its direction register, in the following state :

•N-channel.....when the content of the port latch is "1"

the transistor becomes the OFF state, which causes the ports to be the high-impedance state. Note that the level becomes "undefined" depending on external circuits.

Accordingly, the potential which is input to the input buffer in a microcomputer is unstable in the state that input levels of a input port and an I/O port are "undefined." This may cause power source current.

*2 stand-by state : the stop mode by executing the STP instruction the wait mode by executing the WIT instruction

#### (2) Modify of the contents of I/O port latch

When the port latch of an I/O port is modified with the bit managing instruction^{*3}, the value of the unspecified bit may be changed.

#### Reason

The bit managing instructions^{*3} are read-modify-write form instructions for reading and writing data by a byte unit. Accordingly, when these instructions are executed on a bit of the data register of an I/O port, the following is executed to all bits of the data register.

•As for a bit which is set for an input port :

The pin state is read in the CPU, and is written to this bit after bit managing.

•As for a bit which is set for an output port :

The bit value is read in the CPU, and is written to this bit after bit managing.

Note the following :

- •Even when a port which is set as an output port is changed for an input port, its data register holds the output data.
- •As for a bit of which is set for an input port, its value may be changed even when not specified with a bit managing instruction in case where the pin state differs from its data register contents

*3 bit managing instructions : SEB, and CLB instruction

#### 6.3.9 Note on JMP instruction

When using the **JMP** instruction (the indirect addressing mode), do not specify the last address in a page as an indirect address.

Memory (addresses 0000₁₆ to FFF₁₆) is separated into pages (by each 256 address).

### 6.3 Notes on use

#### 6.3.10 Note on multi-master I²C-BUS interface

This function is used at  $f(X_{IN}) = 8.0$  MHz of oscillation frequency.

#### 6.3.11 Termination of unused pins

#### (1) Proper termination of unused pins

■ Output ports : Open

#### ■ Input ports :

Connect each pin to Vcc or Vss through each resistor of 1 kW to 10 kW.

Ports that permit the selecting of a built-in pull-up or pull-down resistor can also use this resistor. As for pins whose potential affects to operation modes such as pins CNVss, INT or others, select the Vcc pin or the Vss pin according to their operation mode.

#### ■ I/O ports :

•Set the I/O ports for the input mode and connect them to Vcc or Vss through each resistor of 1 k $\Omega$  to 10 k $\Omega$ . Set the I/O ports for the output mode and open them at "L" or "H."

•When opening them in the output mode, the input mode of the initial status remains until the mode of the ports is switched over to the output mode by the program after reset. Thus, the potential at these pins is undefined and the power source current may increase in the input mode. With regard to an effects on the system, thoroughly perform system evaluation on the user side.

•Since the direction register setup may be changed because of a program runaway or noise, set reliability direction registers by program periodically to increase the reliability.

#### (2) Incorrect termination of unused pins

#### ■ input ports and I/O ports :

Do not open in the input mode.

#### Reason

•The power supply current may increase depending on the first-stage circuit. •An effect due to noise may be easily produced as compared with proper termination (1). shown on the above.

#### ■ I/O ports :

Set for input mode and do not connect to Vcc or Vss directly.

#### Reason

If the direction register setup changes for the output mode because of a program runaway or noise, a short circuit may occur between a port and Vcc (or Vss).

#### ■ I/O ports :

Set for the input mode and do not connect multiple ports in a lump to Vcc or Vss through a resistor.

#### Reason

If the direction register setup changes for the output mode because of a program runaway or noise, a short circuit may occur between ports.

(3) At the termination of unused pins, perform wiring at the shortest possible distance (20 mm or less) from microcomputer pins.

### 6.4 Countermeasures against noise

Countermeasures against noise are described below. The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

#### 6.4.1 Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer. The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.

#### (1) Wiring for reset input pin

Make the length of wiring which is connected to the RESET input pin as short as possible. Especially, connect a capacitor across the RESET input pin and the  $V_{SS}$  pin with the shortest possible wiring (within 20mm).

#### Reason

The width of a pulse input into the RESET pin is determined by the timing necessary conditions. If noise having a shorter pulse width than the standard is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized. This may cause a program runaway.



Fig.6.4.1 Wiring for RESET input pin

#### (2) Wiring for clock input/output pins

- •Make the length of wiring which is connected to clock
- ●I/O pins as short as possible.
- •Make the length of wiring (within 20mm) across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- •Separate the V_{ss} pattern only for oscillation from other V_{ss} patterns.

#### Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the  $V_{SS}$  level of a microcomputer and the  $V_{SS}$  level of an oscillator, the correct clock will not be input in the microcomputer.





#### 6.4 Countermeasures against noise

#### (3) Wiring to CNVss pin

Connect the CNVss pin to the Vss pin with the shortest possible wiring.

#### Reason

The processor mode of a microcomputer is influenced by a potential at the CNVss pin. If a potential difference is caused by the noise between pins CNVss and Vss, the processor mode may become unstable. This may cause a microcomputer malfunction or a program runaway.



Fig.6.4.3 Wiring for CNVss pin

#### (4) Wiring to V_{PP} pin of One Time PROM version and EPROM version

When the  $V_{\text{PP}}$  pin is also used as the  $CNV_{\text{SS}}$  pin*1

Connect an approximately 5 kW resistor to the  $V_{PP}$  pin the shortest possible in series and also to the Vss pin. When not connecting the resistor, make the length of wiring between the VPP pin and the Vss pin the shortest possible (refer to "countermeasure example 1 of Figure 6.4.4")

- *1 When a microcomputer has the CNVss pin, the VPP pin is also used as the CNVss pin.
- Note: Even when a circuit which included an approximately 5 kW resistor is used in the Mask ROM version, the microcomputer operates correctly.

#### Reason

The V_{PP} pin of the One Time PROM and the EPROM version is the power source input pin for the built-in PROM. When programming in the built-in PROM, the impedance of the V_{PP} pin is low to allow the electric current for writing flow into the PROM. Because of this, noise can enter easily. If noise enters the V_{PP} pin, abnormal instruction codes or data are read from the built-in PROM, which may cause a program runaway.



Fig.6.4.4 Wiring for V_{PP} pin of One Time PROM and EPROM version

#### 6.4 Countermeasures against noise

#### 6.4.2 Connection of a bypass capacitor across Vss line and Vcc line

Connect an approximately 0.1  $\mu F$  bypass capacitor across the Vss line and the Vcc line as follows:

- •Connect a bypass capacitor across the Vss pin and the Vcc pin at equal length.
- •Connect a bypass capacitor across the Vss pin and the Vcc pin with the shortest possible wiring.
- •Use lines with a larger diameter than other signal lines for Vss line and Vcc line.



Fig.6.4.5 Bypass capacitor across V_{ss} line and V_{cc} line

#### 6.4.3 Wiring to analog input pins

- •Connect an approximately 100  $\Omega$  to 1 k $\Omega$  resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

#### Reason

Signals which is input in an analog input pin (such as an A-D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

If a capacitor between an analog input pin and the  $V_{ss}$  pin is grounded at a position far away from the  $V_{ss}$  pin, noise on the GND line may enter a microcomputer through the capacitor.



Fig.6.4.6 Analog signal line and resistor and capacitor

#### 6.4 Countermeasures against noise

#### 6.4.4 Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping an oscillator away from large current signal lines

Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

#### Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

#### (2) Installing an oscillator away from signal lines where potential levels change frequently

Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

#### Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

#### (3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a  $V_{\text{SS}}$  pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the  $V_{SS}$  pattern to the microcomputer  $V_{SS}$  pin with the shortest possible wiring. Besides, separate this  $V_{SS}$  pattern from other  $V_{SS}$  patterns.



Fig.6.4.7 Wiring for large current signal line



Fig.6.4.8 Wiring for signal line where potential levels charge frequently



Fig.6.4.9 Vss pattern on underside of an oscillator

#### 6.4 Countermeasures against noise

#### 6.4.5 Setup for I/O ports

Setup I/O ports using hardware and software as follows:

- <Hardware>
- •Connect a resistor of 100  $\Omega$  or more to an I/O port in series.
- <Software>
- •As for an input port, read data several times by a program for checking whether input levels are equal or not.
- •As for an output port, since the output data may reverse because of noise, rewrite data to its data register at fixed periods.
- •Rewrite data to direction registers and pull-up control registers (only the product having it) at fixed periods.

When a direction register is set for input port again at fixed periods, a several-nanosecond short pulse may be output from this port. If this is undesirable, connect a capacitor to this port to remove the noise pulse.



#### 6.4 Countermeasures against noise

#### 6.4.6 Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.

In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine. This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

<The main routine>

●Assigns a single byte of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

 $N+1 \ge$  (Counts of interrupt processing executed in each main routine)

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

•Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.

•Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case: 34 2 8

If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- •Decrements the SWDT contents by 1 at each interrupt processing.
- •Determins that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- •Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.



Fig. 6.4.11 Watchidog timer by software

### 6.5 Memory assignment



## 6.5 Memory assignment

Fig. 6.5.1 Memory assignment of M37221M4-XXXSP and M37221M6-XXXSP/FP

## 6.5 Memory assignment



Fig. 6.5.2 Memory assignment of M37221M8-XXXSP and M37221MA-XXXSP

### 6.5 Memory assignment



Fig. 6.5.3 Memory assignment of M37220M3-XXXSP/FP

### 6.6 SFR assignment



Fig. 6.6.1 SFR assignment (including internal state immediately after reset and access characteristics) (1) (M37221Mx-XXXSP/FP)













∎SF	FR Area (addresses C016 to	DF16)
		<bit allocation=""></bit>
		Name : Function bit
		: No function bit
		0 : Fix this bit to "0" (do not write "1")
		1 : Fix this bit to "1" (do not write "0")
Addr	ess Register	Bit allocation b7 b0
C016	Port P0 (P0)	
C116	Port P0 direction register (D0)	
C216	Port P1 (P1)	
C316	Port P1 direction register (D1)	
C416	Port P2 (P2)	
C516	Port P2 direction register (D2)	
C616	Port P3 (P3)	4. 3
C716	Port P3 direction register (D3)	A SE OF
C816		2 × 1
C916		
CA16	Port P5 (P5)	G
CB16	Port P5 direction register (D5)	
CC16		
CD16	Port P3 output mode control register (P3S)	DA2S DA1S P31S P30S
CE16	DA-H register (DA-H)	
CF ₁₆	DA-L register (DA-L)	
D016	PWM0 register (PWM0)	
D116	PWM1 register (PWM1)	
D216	PWM2 register (PWM2)	
D316	PWM3 register (PWM3)	
D416	PWM4 register (PWM4)	
D516	PWM output control register 1 (PW)	PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0
D616	PWM output control register 2 (PN)	PN4 PN3 PN2
D716		
D816		
D916		
DA16		
DB16		SM6 SM5 0 SM2 SM2 SM1 OM0
DC16	Serial I/O mode register (SM)	
	Serial I/O register (SIO)	
	DAT conversion register (DA1)	
DF16	DAZ COnversion register (DAZ)	
	<u> </u>	

Fig. 6.6.4 SFR assignment (including internal state immediately after reset and access characteristics) (4) (M37220M3-XXXSP/FP)





Fig. 6.6.5 SFR assignment (including internal state immediately after reset and access characteristics) (5) (M37220M3-XXXSP/FP)

## 6.6 SFR assignment

<State immediately after reset >

0 : "0" immediately after reset



?	: Undefined immediately
	after reset

State immediately after reset											
0016											
0	?	?	?	?	?	?	?				
0	?	?	?	?	?	?	?				
?											
0	0	0	0	?	?	?	?				
0	0	0	0	0	?	0	?				
0016											
			00	16							
			00	16							
	0016										
0016											
?											
0016											
0016											
0	0	0	?	0	0	0	0				
0016											
FF16											
0716											
	FF16										
			07	16							
			00	)16							
			00	<b>)</b> 16							
			7	<b>&gt;</b>							
			7	>							
			7	>							
0	0	0	0	0	0	0	?				
			00	16							
1	1	1	1	1	1	0	0				
0016											
0016											
	0016										
			00	<b>)</b> 16							

<b>b</b> 7	Ac	cess	s cha	ract	eris	tics	hC
D7				R١	N		DC
		1		R١	N		
				R١	N		
	<u>,</u>						
			z7	5	R	W	
	36	$\epsilon$		-	RW		RW
Ac	12	RW	C	$\mathbf{A}^{\mathbf{A}}$	RW		
		RW			RW		
-	0	RW			RW		
		RW			RW		
RW						RW	
					1		
	RW			RW			
	F				R	2W	
			RO			RW	
				R	W		
			<u></u>	W			
				VV			
			R	VV			
			R		\ <u>\</u>		
				71	v v 		
			P	N N	vv		
			Ň	vv			
			RW				
					RW		
RW				R	W		
			RW			RW	
RW				R	W		
			RW			RW	

RW : Read enabled, write enabled

RO : Read enabled, write disabled

## 6.7 Control registers

## 6.7 Control registers





6.7 Control registers



Fig. 6.7.4 Port P3 output mode control register

## Address 00CD16

## 6.7 Control registers



Fig. 6.7.5 PWM output control register 1



b7b6b5b4b3b2b1b0	P	WM output control regist	er 2 (PN) [Address 00D616]			
	В	Name	Functions	After reset	R	W
	0, 1	Nothing is assigned. Th When these bits are rea	0	R	_	
	2	DA output polarity selection bit (PN3)	0 : Positive polarity 1 : Negative polarity	0	R	W
	3	PWM output polarity selection bit (PN4)	0 : Positive polarity 1 : Negative polarity	0	R	W
	4	DA general-purpose output bit (PN5)	0 : Output LOW 1 : Output HIGH	0	R	W
	5 to 7	Nothing is assigned. Th When these bits are rea	ese bits are write disable bits. ad out, the values are "0."	0	R	—

Fig. 6.7.6 PWM output control register 2



6.7 Control registers



## Address 00D716



Fig. 6.7.8 I²C address register

## Address 00D816
### 6.7 Control registers



6.7 Control registers



### 6.7 Control registers

I²C Clock Control Register



Fig. 6.7.11 I²C clock contorol register

Address 00DB16

6.7 Control registers



Fig. 6.7.12 Serial I/O mode register

Address 00DC16

### 6.7 Control registers

DA n Conversion Regis	ster					
b7 b6 b5 b4 b3 b2 b1 b0	 קר	A n conversion register	r (DAn) (n – 1 and 2) [Add	ress 00[	)E16 ()	
	В	Name	Functions	Afte	er reset	RW
	0 to 5	DA conversion set bits (DAn0–DAn5)	b5         b4         b3         b2         b1         b0           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         1/64Vcc           0         0         0         0         1         0         1/64Vcc         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		erminate	RW
	6	Fix this bit to "0."			0	R —
	7	Nothing is assigned. This bi	it is a write disable bit.		0	R —
g. 6.7.13 DA n conversion regi	iste	r (only M37220M3	B-XXXSP/FP)	esses	00D	E16, 00DF
g. 6.7.13 DA n conversion regi	iste	r (only M37220M3	B-XXXSP/FP)	esses	00D	E16, 00DF
ig. 6.7.13 DA n conversion regions in the second se	egis	r (only M37220M3	Address 00E016]	esses	00D	E16, 00DF
ig. 6.7.13 DA n conversion regions in the second state of the seco	egis Hor	r (only M37220M3 ster izontal position register (HR) Name	Address 00E016]	After reset	RW	E16, 00DF
g. 6.7.13 DA n conversion region region region de la conversion regional de la conversion Responsable de la conversion Responsable de la conversion de la conve	egis Hor	r (only M37220M3 ter izontal position register (HR) Name Horizontal display start positions (HR0 to HR5)	Address Address 00E016] Functions 64 steps (0016 to 3F16)	After reset	R W R W	E16, 00DF





6.7 Control registers



### Addresses 00E116, 00E216



Fig. 6.7.16 Character size register

### Address 00E416

### 6.7 Control registers



Fig. 6.7.17 Border selection register

Address 00E516

#### 6.7 Control registers



Fig. 6.7.18 Color register n

#### Addresses 00E616 to 00E916

### 6.7 Control registers



#### 6.7 Control registers

![](_page_261_Figure_2.jpeg)

3-

### Address 00EC16

#### 6.7 Control registers

![](_page_262_Figure_2.jpeg)

6.7 Control registers

![](_page_263_Figure_2.jpeg)

#### 6.7 Control registers

![](_page_264_Figure_2.jpeg)

Fig. 6.7.24 Timer 12 mode register

![](_page_264_Picture_4.jpeg)

6.7 Control registers

![](_page_265_Figure_2.jpeg)

Fig. 6.7.25 Timer 34 mode register

### Address 00F516

b7 b6 b5 b4	b3 b2 b1 b0	Int	errupt input polarity register(I	RE) [Address 00F916]			
		b	Name	Functions	After reset	RV	v
	۰.	0	Nothing is assigned. This bit When this bit is read out, the	is a write disable bit. value is "0."	Indeterminate	R –	-
	· · · · · · · · · · · · · · · · · · ·	1, 2	Fix these bits to "0."		0	RV	V
	     	3	INT1 polarity switch bit (RE3)	0 : Positive polarity 1 : Negative polarity	0	RV	V
		4	INT2 polarity switch bit (RE4)	0 : Positive polarity 1 : Negative polarity	0	RV	V
		5	INT3 polarity switch bit (RE5)	0 : Positive polarity 1 : Negative polarity	0	RV	V
		6	Nothing is assigned. This bit When this bit is read out, the	is a write disable bit. e value is "0."	0	R -	-
   		7	Fix this bit to "0."		0	RV	v

Fig. 6.7.26 Interrupt input polarity register

### Address 00F916

#### 6.7 Control registers

![](_page_266_Figure_2.jpeg)

★: "0" can be set by software, but "1" cannot be set.
Note : M37220M3-XXXSP/FP

6	Nothing is assigned. This bit is a write disable bit.	0	R
	When this bit is read out, the value is "0."		

Fig. 6.7.28 Interrupt request register 1

#### Address 00FC16

6.7 Control registers

![](_page_267_Figure_2.jpeg)

bit. When this bit is read out, the value is "0."

Fig. 6.7.30 Interrupt control register 1

### Address 00FE16

### 6.7 Control registers

![](_page_268_Figure_2.jpeg)

Fig. 6.7.32 ROM correction enable register

### Address 021216

6.8 Ports

#### 6.8 Ports

![](_page_269_Figure_3.jpeg)

6.8 Ports

![](_page_270_Figure_2.jpeg)

Fig. 6.8.2 I/O pin block diagram (2)

6.9 Machine instruction table

### 6.9 Machine instruction table

#### Machine instructions

			1						1	٨ddr	essi	ing r	nod	e						
Symbol	Function	Details		IMI	Р		MN	A		A		E	BIT,	A		ZΡ		в	IT.Z	2P
			0P	n	±	0P	n	±	0P	n	±	ΩP		ŧ	0P		#	ΩP		++
ADC	When T=0	Adds the carry accumulator and memory con-		+	1	69	2	2	<u> </u>			<b>.</b>		-	65	2	7			-
(Note 1)	A←A+M+C	tents. The results are entered into the accumu-				03	2	2							05	3	2			
(Note 6)		lator.																		ĺ.
	When T=1	Adds the contents of the memory in the																		
	$M(X) \leftarrow M(X) + M + C$	address indicated by index register X, the con-																		ĺ
		tents of the memory specified by the addres-																		
		sing mode and the carry. The results are en-																		
		tered into the memory at the address indicated						1												
		by index register X.	ļ	<u> </u>			<u> </u>		<u> </u>											
AND	When T=0	"AND's" the accumulator and memory contents.				29	2	2							25	3	2			ĺ
(Note 1)	A⊷A∧M	The results are entered into the accumulator.																		
		"AND's" the contents of the memory of the address																		
	when $i=1$	indicated by index register X and the contents of the	1			1														
1	$M(X) \leftarrow M(X) \land M$	memory specified by the addressing mode. The re-			ŀ															Í
		dicated by index register Y																		ĺ
	7 0	Shifts the contents of accumulator or contents of	+	+-	+		-		0.4	2	1				06	5	2			<u> </u>
		memory one bit to the left. The low order bit of						3	UA	2					00	5	2			l
		the accumulator or memory is cleared and the				4	la.		Ť.											
		high order bit is shifted into the carry flag.			3	1.3														
		,	1	k	T	2			0	2										ĺ
BBC	Ab or Mb=0?	Branches when the contents of the bit specified		-				1		-		13						17		
(Note 4)		in the accumulator or memory is "0".	6		6							20i	4	2				20i	5	3
				C		1														ĺ
BBS	Ab or Mb=1?	Branches when the contents of the bit specified	1	-								03						07	_	-
(Note 4)		in the accumulator or memory is "1".										2 <b>0</b> i	4	2				20i	5	3
																				l
BCC	C=0?	Branches when the contents of carry flag is "0".																		1
(Note 4)																				
BCS	C=1?	Branches when the contents of carry flag is "1".																		
(Note 4)																				
BEQ	Z=1?	Branches when the contents of zero flag is "1".																		
(Note 4)			ļ																	
BIT	АЛМ	"AND's" the contents of accumulator and mem-													24	3	2			
		ory. The results are not entered anywhere.																		
			<u> </u>			<u> </u>													$\square$	
BMI	N=1?	Branches when the contents of negative flag is																		
(Note 4)			<b> </b>	<u> </u>	-		<u> </u>			-									$\vdash$	
BNE (Nate 4)	Z=0?	Branches when the contents of zero flag is "0".			l															
(Note 4)			-	-	-															
BPL (Note 4)	N=0?	Branches when the contents of negative flag is								1										
(Note 4)			⊢	-		<u> </u>	-			-		-							$\vdash$	
	PC-PCIoliset	the program counter																		
PDV	B+-1	Executes a software interrupt	00	7	1	$\vdash$													$\vdash$	-
		Executes a solware interrupt.	00	1	1															
	S+S-1			1																
	M(S) + PC.																			
	S←S−1								1	l I										
	M(S) -PS		Ì																	ĺ
	S⊷S−1		l		1															
	PCL←ADL							ļ												
	PCut-ADu				1	I I	1											1		

	. <u> </u>													Ad	dres	ssine	a ma	ode																Proc	ASS	orst	atus		iste	,
	ZP.)	<	:	ZP.	<b>r</b>		ABS	5	A	BS	x	A	BS	.Y	<u> </u>	INC	)	Z	P.IN		1		x	1		Y		RFI		[	SP		7	6	5	4	2	2	1	0
OF	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	N	v	т	в	D	-	z	c
75	4	2				6D	4	3	7D	5	3	79	5	3							61	6	2	71	6	2							N	V	•	•	•	•	Z	C
35	4	2				2D	4	3	3D	5	3	39	5	3							21	6	2	31	6	2							N		•	-	•	•	Z	•
16	6	2				0E	6	3	1E	7	3											-		3	-24			5		5	1		N	•	•	•	•	•	z	С
																						3	2	C	Ş	5							•	•	•	•	•	•	•	•
																																	•	•	•	•	•	•	•	•
																											90	2	2				•	•	•	•	•	•	•	•
	-																					$\vdash$					в0	2	2		-		•	•	•	•	•	•	•	•
											F							-									F0	2	2				•	•	•	•	•	•	•	•
						2C	4	3																									M7	M ₆	•	•	•	•	Z	•
$\mid$																											30	2	2				•	•	•	•	•	•	•	•
╞			-								-										-						D0	2	2				•	•	•	•	•	•	•	•
									$\square$			$\vdash$															10	2	2				•	•	•	•	•	•	•	•
			-	-					$\left  \right $		-											-					80	4	2				•	•	•	•	•	•	•	•
																										na an a							•	•	•	1	•	1	•	•

			Γ							Add	ress	ing ı	mod	le						
Symbol	Function	Details		імі	P		IMN	v	1	A		E	зіт,	A		ZP		в	IT,Z	P
			0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
BVC (Note 4)	V=0?	Branches when the contents of overflow flag is "0."						Ī												
BVS (Note 4)	V=1?	Branches when the contents of overflow flag is "1."																-		
CLB	A _b or M _b ⊷0	Clears the contents of the bit specified in the accumulator or memory to "0."										1 B 20i	2	1				1 F 20i	5	2
CLC	C+-0	Clears the contents of the carry flag to "0."	18	2	1	1	$\square$	•		1		1	ŀ			-				
CLD	D <b>←</b> 0	Clears the contents of decimal mode flag to "0."	D8	2	1															
CLI	1←0	Clears the contents of interrupt disable flag to "0."	58	2	1															
CLT	τ⊷0	Clears the contents of index X mode flag to "0."	12	2	1															
CLV	V←0	Clears the contents overflow flag to "0."	в8	2	1															
CMP (Note 3)	When T=0 A-M	Compares the contents of accumulator and memory.				C9	2	2	3						C5	3	2			[
	When T=1	Compares the contents of the memory speci-						3	p											l
	м(х)-м	fied by the addressing mode with the contents			3-		\$													
		of the address indicated by index register X.	4	1	1	•			C		ľ.									
СОМ	M←M	Forms a one's complement of the contents of memory, and stores it into memory.				1	5	-							44	5	2			
СРХ	х—м	Compares the contents of index register X and memory.		2		EO	2	2					-		E4	3	2			
CPY	Ү—М	Compares the contents of index register Y and memory.				CO	2	2							C4	3	2			
DEC	A←A−1 or M←M−1	Decrements the contents of the accumulator or memory by 1.							1A	2	1				C6	5	2			
DEX	x+x−1	Decrements the contents of index register X by 1.	CA	2	1															
DEY	Y⊷Y−1	Decrements the contents of index register Y by 1.	88	2	1															
DIV	$A \leftarrow (M(zz+X+1)),$	Divides the 16-bit data that is the contents of																		
(Note 5)	M(zz+X))/A	M(zz+x+1) for high byte and the contents of																		
	ment of Remainder	M(22 + x) for low byte by the accumulator.	ŀ																	
	S←S−1	1's complement of the remainder on the stack.																		
EOR	When T=0	"Exclusive-ORs" the contents of accumulator			-	49	2	2			-			-	45	3	2			
(Note 1)	A←A <del>V</del> M	and memory. The results are stored in the accumulator.																		ł
	When T=1	"Exclusive-ORs" the contents of the memory																		
	M(X)←M(X) <del>V</del> M	specified by the addressing mode and the con-							1											
		tents of the memory at the address indicated by									1			l	İ I					
		memory at the address indicated by index reg- ister X.																		
INC	A←A+1 or M←M+1	Increments the contents of accumulator or memory by 1.							ЗА	2	1				E6	5	2			
INX	<b>X</b> ← <b>X</b> +1	Increments the contents of index register X by 1.	E8	2	1.															
INY	Y←Y+1	Increments the contents of index register Y by 1.	C8	2	1															

Г				-										Ad	dres	ssin	a m																	Proc					vieto	
	ZP.)	<u>к</u>		ZP.	Y		AB	s	A	BS	x	A	BS	Y	<u> </u>	INF	<u>ן היי</u> כ	7		חו			x			v		REI		[	90		7	6	5		2	2	1	0
OP	n	#	0P	n	#	OP	n	#	OP	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	- #	0P	n	#	N N	v	т	В	D	1	z	c
																<u> </u>					ŀ		-				50	2	2	-		-	•	•	•	•	•	•	•	•
																											70	2	2				•	•	•	•	•	•	•	•
														-																			•	•	•	•	•	•	•	•
																																	٠	•	•	•	•	•	•	0
																																	•	•	•	•	0	•	•	•
																																	•	•	•	•	•	0	•	•
																																	•	•	0	•	•	•	•	•
																																	•	0	•	•	•	•	٠	•
D5	4	2				CD	4	3	DD	5	3	D9	5	3							C1	6	2	D1	6	2			4	3	-		N	•	•	•	•	•	z	C
																									N	5	Ę.													
																						-	2	Ż	1	9			Ş	2										
																						1			.(		\$						N	•	•	•	•	•	z	•
						EC	4	3								_																	N	•	•	•	•	•	Z	С
						cc	4	3										)`															N	•	•	•	•	•	z	С
D6	6	2				CE	6	3	DE	7	3																						N	•	•	•	•	•	z	•
																																	N	•	•	•	•	•	z	•
																																	N	•	•	•	•	•	z	·
E2	16	2																															•	•	•	•	•	•	•	•
55	4	2				4D	4	3	5D	5	3	59	5	3							41	6	2	51	6	2							N	•	•	•	•	•	z	•
F6	6	2				EE	6	3	FE	7	3																						N	•	•	•	•	•	z	·
																																	N	•	•	•	•	•	z	·
																													-				N	•	•	•	•	•	z	•

			[							Add	ress	ing	mod	e						
Symbol	Function	Details	$\vdash$	IM	>	Γ	IM	1		A		E	зіт,	A		ZP		в	IT.Z	Р
			OP	n	#	OP	n	#	0P	n	#	0P	n	#	0P	n	#	0P		#
JMP	If addressing mode is ABS $PC_{L} \leftarrow AD_{L}$ $PC_{H} \leftarrow AD_{H}$ If addressing mode is IND $PC_{L} \leftarrow M (AD_{H}, AD_{L})$ $PC_{H} \leftarrow M (AD_{H}, AD_{L}+1)$ If addressing mode is ZP, IND $PC_{L} \leftarrow M (00, AD_{L})$	Jumps to the specified address.																		
JSR	$PC_{H} \leftarrow M(00, AD_{L}+1)$ M(S) $\leftarrow PC_{H}$	After storing contents of program counter in			-	-	$\vdash$				-		-					$\left  - \right $		_
	$\begin{split} \mathbf{S} &\leftarrow \mathbf{S} &\leftarrow \mathbf{I} \\ \mathbf{M} \left( \mathbf{S} \right) &\leftarrow \mathbf{PC}_{L} \\ \mathbf{S} &\leftarrow \mathbf{S} &\leftarrow \mathbf{I} \\ \text{After executing the above,} \\ \text{if addressing mode is ABS,} \\ \mathbf{PC}_{L} &\leftarrow \mathbf{AD}_{L} \\ \mathbf{PC}_{H} &\leftarrow \mathbf{AD}_{H} \\ \text{If addressing mode is SP,} \\ \mathbf{PC}_{L} &\leftarrow \mathbf{AD}_{L} \\ \mathbf{PC}_{H} &\leftarrow \mathbf{FF} \\ \text{If addressing mode is ZP, IND,} \\ \mathbf{PC}_{L} &\leftarrow \mathbf{M} \left( 00, \mathbf{AD}_{L} \right) \\ \mathbf{PC}_{H} &\leftarrow \mathbf{M} \left( 00, \mathbf{AD}_{L} + 1 \right) \end{split}$	stack, and jumps to the specified address.			1	204	2	- Bi												
LDA	When T=0	Load accumulator with contents of memory.		-		A9	2	2							A5	3	2		$\rightarrow$	-
(Note 2)	A←M When T=1 M(X)←M	Load memory indicated by index register X with contents of memory specified by the addres- sing mode.																		
LDM	M←nn	Load memory with immediate value.													зс	4	3			
LDX	ХМ	Load index register X with contents of memory.				A2	2	2							A6	3	2			-
LDY	Y←M	Load index register Y with contents of memory.				AO	2	2							A4	3	2			
LSR	$\begin{array}{c} 7 & 0 \\ 0 \rightarrow \square \rightarrow C \end{array}$	Shift the contents of accumulator or memory to the right by one bit. The low order bit of accumulator or memory is stored in carry, 7th bit is cleared.							4A	2	1				46	5	2			
MUL	M(S) • A←A×M(zz+X) S←S− 1	Multiplies the accumulator with the contents of memory specified by the zero page X addres- sing mode and stores the high byte of the result on the stack and the low byte in the accumu- lator.																		
NOP	PC+PC+1	No operation.	EA	2	1															
ORA (Note 1)	When T=0 A-AVM When T=1 M(X) - M(X) VM	"Logical OR's" the contents of memory and accumulator. The result is stored in the accu- mulator. "Logical OR's" the contents of memory indi- cated by index register X and contents of mem- ory specified by the addressing mode. The re- sult is stored in the memory specified by index				09	2	2							05	3	2			
		register X.																		

														Ad	dres	sind	2 mc	ode											-					Proc	A55	or st	atus		iste	r
	ZP.)	<	z	(P.)	Y		ABS	3	A	BS.	х	A	BS.	Y			) )	z	P.IN	ID.		ND.	x	н	ND.	Y		REI			SP		7	6	5	4	3	2	1	
OP	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	OP	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	· N	v	т	в	D	-	- z	c
						4C	3	3							6C	5	3	В2	4	2					1		-				-		•	•	•	•	•	•	•	•
						20	6	3										02	7	2										22	5	2	•	•	•	•	•	•	•	•
B5	4	2				AD	4	3	BD	5	3	89	5	3							A1	6	2	81	6	2	2	10	2 C				Z	•	•		•	•	Z	•
		-											5				5									-								-					-	
	ĺ																																٠	•	•	•	•	•	•	•
			В6	4	2	AE	4	3				BE	5	3																			N	•	•	•	•	•	z	•
В4	4	2				AC	4	3	вс	5	3						-			-					-	-	$\vdash$						N	•	•	•	•	•	z	•
56	6	2				۵F	6	3	5E	7	3							-															0	•			•	•	7	0
		-					U		02																								v						-	Ū
62	15	2																															•	•	•	•	•	•	•	•
15	4	2				OD	4	3	1D	5	3	19	5	3			+				01	6	2	11	6	2	-				$\left  \right $		• N	•	•	•	•	•	·	•
		-						-		-	-		-										-																-	

			T							Addr	essi	ina r	nod	8	·					
Symbol	Function	Details	$\vdash$	IM	Þ		M	٨	1	A	-	l F	ят	A		7P		B	IT 7	70
					±	00		 	0P	<u></u>	±	0P		<u>#</u>	0P		++			
РНА	M(S)←A	Saves the contents of the accumulator in memory	48	3	1	<b>–</b>			-	-	-			π		<u> </u>	-	01		#
	S⊷S−1	at the address indicated by the stack pointer and		-																
		decrements the contents of stack pointer by 1.																		
PHP	M(S)←PS	Saves the contents of the processor status reg-	08	3	1					-										
	s⊷s–1	ister in memory at the address indicated by the	ĺ																	
		stack pointer and decrements the contents of	ļ										- 1							
		the stack pointer by 1.				ļ														
PLA	s←s+1	Increments the contents of the stack pointer by 1	68	4	1															ĺ
	A←M(S)	and restores the accumulator from the memory at																		ł
-	0.011	the address indicated by the stack pointer.			-	<u> </u>			<u> </u>								<u> </u>			<u> </u>
PLP	S+-S+1	Increments the contents of stack pointer by 1 and	28	4	1															
	PS+M(S)	restores the processor status register from the mem-																		
POL	7 0	Shifts the contents of the memory or accumula		+	+	<u> </u>		-	2.4	2	1				26	E		$\vdash$		
NOL	┍╾ <u></u> <u></u> ー	for to the left by one bit. The high order bit is							24	2	<b>'</b>				20	5	2			
		shifted into the carry flag and the carry flag is													1					
		shifted into the low order bit.							-											
ROR	7 0	Shifts the contents of the memory or accumula-	<u> </u>	+				-	6A	2	1				66	5	2			$\vdash$
	┍─©→──┑	tor to the right by one bit. The low order bit is			1			6	70	-						ľ	-			
	·····	shifted into the carry flag and the carry flag is			10-	1	•													
		shifted into the high order bit.	1	2		1			C											
RRF	70	Rotates the contents of memory to the right by 4	-		4		1		-						82	8	2			
		bits. 🚽 🖓						r .		1										
				-		1.					ļ									
RTI	S←S+1	Returns from an interrupt routine to the main	40	6	1															
	PS←M(S)	routine.	-																	
			ĺ –																	
	PCL ← M(S) S+S+1																			
	PC←M(S)																			
RTS	S+-S+1	Returns from a subroutine to the main routine.	60	6	1				<u> </u>	-	<u> </u>							$\square$		F
	PCL←M(S)		0		·															
	s←s+1																			
	PC _H ←M(S)																			
SBC	When T=0	Subtracts the contents of memory and comple-				E9	2	2							E5	3	2			
(Note 1)	A←A−M−C	ment of carry flag from the contents of accumula-																		
(Note 5)		tor. The results are stored into the accumulator.																		
	When T=1	Subtracts contents of complement of carry flag			1															ł
	$M(X) \leftarrow M(X) - M - C$	and contents of the memory indicated by the													ŀ					
		addressing mode from the memory at the																		
		sults are stored into the memory of the address																		1
		indicated by index register X.																		i i
SEB	Ab or Mb+−1	Sets the specified bit in the accumulator or				t	1		1	<u> </u>	†—	0В	2	1				0.F	5	2
		memory to "1."			1							20i						20i	-	-
SEC	C←1	Sets the contents of the carry flag to "1."	38	2	1									1						-
SED	D←1	Sets the contents of the decimal mode flag to	F8	2	1		1	Γ	1											
		"1."													L					
SEI	I←1	Sets the contents of the interrupt disable flag to	78	2	1															
		"1."		-		<u> </u>						L				L				
SET	T⊷1	Sets the contents of the index X mode flag to	32	2	1												ł			· ·
1		"1."	1	1	ł	1	1	ł	1	1		1		1	1		1	1 1	1	1

														Ad	dres	sind	a mo	de																Proc	A55	or st	atus		ista	
z	(P.)	<		ZP.	7		ABS	5	A	BS	.х	A	BS.	Y			, ,	z	P.IN	ID.	11	ND.	x		ND	Y		RFI			SP	,	7	6	5	Δ	2	2	1	
0P	n	、 #	0P		#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	- #	0P	n	#	Ń	v	Т	ч В	D	2	' z	c
																																	•	•	•	•	•	•	•	•
																																	•	.•	•	•	•	•	•	•
																																	N	•	•	•	•	•	Z	•
																																	()	alu)	e sa	ved	in s	tack	)	
36	6	2				2E	6	3	3E	7	3																						Z	•	•	•	•	•	z	С
76	6	2				6E	6	3	7E	7	3												\$			20	4	P.	ja C	5			Z	•	•	•	•	•	z	С
																					P.A	2			0	X	2						•	٠	•	•	•	•	•	•
																																	(\	'alue	e sav	ved	in sl	ack	)	
																																	•	•	•	•	•	•	•	•
F5	4	2				ED	4	3	FD	5	3	F9	5	3							E1	6	2	F1	6	2							N	>	•	•	•	•	Z	c
											ļ																						•	•	•	•	•	•	•	•
			-			-		-	$\vdash$		-				<u> </u>	-			_									_					•	•	•	•	•	•	•	-
				-																													-			•		1		
											_																						•	•	1	•	•	•	•	•

#### 6.9 Machine instruction table

									1	٨ddr	essi	ing r	nod	e						
Symbol	Function	Details		IMF	2		IMN	٨		A		E	ЗIT,	A		ZP		в	IT,Z	٢P
			0P	n	#	0P	'n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
STA	M←A	Stores the contents of accumulator in memory.													85	4	2			
STP		Stops the oscillator.	42	2	1															
STX	м⊷х	Stores the contents of index register X in memory.													86	4	2			
STY	M←Y	Stores the contents of index register Y in memory.													84	4	2			
TAX	X←A	Transfers the contents of the accumulator to in- dex register X.	AA	2	1															
TAY	Y←A	Transfers the contents of the accumulator to in- dex register Y.	88	2	1															
тѕт	M=0?	Tests whether the contents of memory are "0" or not.													64	3	2			
TSX	X←S	Transfers the contents of the stack pointer to in- dex register X.	BA	2	1															
TXA	A←X	Transfers the contents of index register X to the accumulator.	8A	2	1			đ	1	5										
TXS	S⊷X	Transfers, the contents of index register X to the stack pointer.	9A	2	÷.				C	X										
TYA	A⊷Y	Transfers the contents of index register Y to the accumulator.	98	2	1		5													
WIT		Stops the internal clock.	C2	2	1															

Note 1: The number of cycles "n" is increased by 3 when T is 1.
2: The number of cycles "n" is increased by 2 when T is 1.
3: The number of cycles "n" is increased by 1 when T is 1.
4: The number of cycles "n" is increased by 2 when branching has occurred.
5: N, V, and Z flags are invalid in decimal operation mode.

														Ad	dres	sing	g ma	ode																Proc	ess	or st	atus	reg	iste	,
Z	(P,)	(	Z	ZP,`	Y		AB	s	A	BS	,х	A	BS	Y,			)	ZI	P,IN	ID	11	٩D,	х	11	٩D,	Y		REI	-		SP		7	6	5	4	3	2	1	0
0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	N	۷	т	в	D	I	z	с
95	5	2				8D	5	3	9D	6	3	99	6	3							81	7	2	91	7	2							•	•	٠	•	•	•	•	•
																																	•	•	•	•	•	•	•	•
			96	5	2	8E	5	3																									•	•	•	•	•	•	•	•
94	5	2				8C	5	3																									•	•	•	•	•	•	•	•
																																	N	٠	•	•	•	•	z	•
																				-													N	٠	•	•	•	•	z	•
																																	N	•	•	٠	•	•	z	•
																																	N	•	•	٠	•	•	z	•
																												A	4	-			N	•	•	•	•	•	z	•
																								-	*	1	1			X			•	•	•	•	•	•	•	•
																								3	1.		<						N	•	•	•	•	•	z	•
																							1	Ċ	C								•	•	•	•	•	•	•	•

Symbol	Contents	Symbol	Contents				
IMP	Implied addressing mode	+	Addition				
IMM	Immediate addressing mode	-	Subtraction				
А	Accumulator or Accumulator addressing mode	<b>∧</b>	Logical OR				
		V	Logical AND				
BIT, A	Accumulator bit relative addressing mode	<b>∀</b>	Logical exclusive OR				
			Negation				
ZP	Zero page addressing mode	-	Shows direction of data flow				
BIT, ZP	Zero page bit relative addressing mode	X	Index register X				
		Y	Index register Y				
ZP, X	Zero page X addressing mode	S	Stack pointer				
ZP, Y	Zero page Y addressing mode	PC	Program counter				
ABS	Absolute addressing mode	PS	Processor status register				
ABS, X	Absolute X addressing mode	РСн	8 high-order bits of program counter				
ABS, Y	Absolute Y addressing mode	PCL	8 low-order bits of program counter				
IND	Indirect absolute addressing mode	ADH	8 high-order bits of address				
		ADL	8 low-order bits of address				
ZP, IND	Zero page indirect absolute addressing mode	FF	FF in Hexadecimal notation				
		nn	Immediate value				
IND, X	Indirect X addressing mode	м	Memory specified by address designation of any				
IND, Y	Indirect Y addressing mode		addressing mode				
REL	Relative addressing mode	м (х)	Memory of address indicated by contents of index				
SP	Special page addressing mode		register X				
С	Carry flag	м (S)	Memory of address indicated by contents of stack				
z	Zero flag		pointer				
l I	Interrupt disable flag	M(AD _H , AD _L )	Contents of memory at address indicated by AD _H and				
D	Decimal mode flag		$AD_L$ , in $AD_H$ is 8 high-order bits and $AD_L$ is 8 low-				
В	Break flag		order bits.				
Т	X-modified arithmetic mode flag	M(00, AD _L )	Contents of address indicated by zero page ADL				
V	Overflow flag	Ab	1 bit of accumulator				
N	Negative flag	Mb	1 bit of memory				
		OP	Opcode				
		n	Number of cycles				
	L	#	Number of bytes				

6.10 Instruction code table

### 6.10 Instruction code table

D3	-Do	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7 Hex -D4	adecimal notation	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	0	BRK	<b>ORA</b> IND,X	<b>JSR</b> ZP,IND	<b>BBS</b> 0,A		ORA ZP	ASL ZP	<b>BBS</b> 0,ZP	PHP	ORA IMM	ASL A	<b>SEB</b> 0,A		ORA ABS	ASL ABS	<b>SEB</b> 0,ZP
0001	1	BPL	<b>ORA</b> IND,Y	CLT	<b>BBC</b> 0,A		<b>ORA</b> ZP,X	ASL ZP,X	<b>BBC</b> 0,ZP	CLC	<b>ORA</b> ABS,Y	DEC A	<b>CLB</b> 0,A		<b>ORA</b> ABS,X	<b>ASL</b> ABS,X	<b>CLB</b> 0,ZP
0010	2	JSR ABS	<b>AND</b> IND,X	JSR SP	<b>BBS</b> 1,A	BIT ZP	AND ZP	ROL ZP	<b>BBS</b> 1,ZP	PLP	AND IMM	ROL A	<b>SEB</b> 1,A	BIT ABS	AND ABS	ROL ABS	<b>SEB</b> 1,ZP
0011	3	BMI	<b>AND</b> IND,Y	SET	<b>BBC</b> 1,A		<b>AND</b> ZP,X	<b>ROL</b> ZP,X	<b>BBC</b> 1,ZP	SEC	AND ABS,Y	INC A	<b>CLB</b> 1,A	LDM ZP	AND ABS,X	<b>ROL</b> ABS,X	<b>CLB</b> 1,ZP
0100	4	RTI	EOR IND,X	STP	<b>BBS</b> 2,A	COM ZP	EOR ZP	LSR ZP	<b>BBS</b> 2,ZP	PHA	EOR IMM	LSR A	<b>SEB</b> 2,A	JMP Abs	EOR ABS	LSR ABS	<b>SEB</b> 2,ZP
0101	5	BVC	<b>EOR</b> IND,Y		<b>BBC</b> 2,A		<b>EOR</b> ZP,X	LSR ZP,X	<b>BBC</b> 2,ZP	CLI	EOR ABS,Y		<b>CLB</b> 2,A	—	EOR ABS,X	<b>LSR</b> ABS,X	<b>CLB</b> 2,ZP
0110	6	RTS	ADC IND,X		<b>BBS</b> 3,A	TST ZP	ADC ZP	ROR ZP	<b>BBS</b> 3,ZP	PLA	ADC IMM	ROR	<b>SEB</b> 3,A	JMP IND	ADC ABS	ROR ABS	<b>SEB</b> 3,ZP
0111	7	BVS	ADC IND,Y		<b>BBC</b> 3,A		ADC ZP,X	ROR ZP,X	BBC 3,ZP	SEI	ADC ABS,Y		<b>CLB</b> 3,A	—	ADC ABS,X	<b>ROR</b> ABS,X	<b>CLB</b> 3,ZP
1000	8	BRA	<b>STA</b> IND,X	RRF ZP	<b>BBS</b> 4,A	STY ZP	STA ZP	STX ZP	<b>BBS</b> 4,ZP	DEY	-	ТХА	<b>SEB</b> 4,A	STY ABS	STA ABS	STX ABS	<b>SEB</b> 4,ZP
1001	9	BCC	<b>STA</b> IND,Y		<b>BBC</b> 4,A	STY ZP,X	STA ZP,X	STX ZP,X	BBC 4,ZP	TYA	<b>STA</b> ABS,Y	TXS	<b>CLB</b> 4,A		<b>STA</b> ABS,X		<b>CLB</b> 4,ZP
1010	Α	LDY Imm	<b>LDA</b> IND,X	LDX IMM	<b>BBS</b> 5,A	LDY ZP	LDA ZP	LDX ZP	<b>BBS</b> 5,ZP	ΤΑΥ	LDA IMM	ТАХ	<b>SEB</b> 5,A	LDY ABS	LDA ABS	LDX ABS	<b>SEB</b> 5,ZP
1011	В	BCS	<b>LDA</b> IND,Y	JMP ZP,IND	<b>BBC</b> 5,A	LDY ZP,X	LDA ZP,X	<b>LDX</b> ZP,Y	<b>BBC</b> 5,ZP	CLV	LDA ABS,Y	TSX	<b>CLB</b> 5,A	LDY ABS,X	LDA ABS,X	<b>LDX</b> ABS,Y	<b>CLB</b> 5,ZP
1100	С	CPY IMM	<b>CMP</b> IND,X	wiτ	<b>BBS</b> 6,A	CPY ZP	CMP ZP	DEC ZP	<b>BBS</b> 6,ZP	INY	CMP IMM	DEX	<b>SEB</b> 6,A	CPY ABS	CMP ABS	DEC ABS	<b>SEB</b> 6,ZP
1101	D	BNE	<b>CMP</b> IND,Y		<b>BBC</b> 6,A		<b>CMP</b> ZP,X	DEC ZP,X	<b>BBC</b> 6,ZP	CLD	CMP ABS,Y		<b>CLB</b> 6,A		CMP ABS,X	<b>DEC</b> ABS,X	<b>CLB</b> 6,ZP
1110	Ε	CPX IMM	SBC IND,X		<b>BBS</b> 7,A	CPX ZP	SBC ZP	INC ZP	<b>BBS</b> 7,ZP	INX	SBC IMM	NOP	<b>SEB</b> 7,A	CPX ABS	SBC ABS	INC ABS	<b>SEB</b> 7,ZP
1111	F	BEQ	SBC IND,Y		<b>BBC</b> 7,A	_	SBC ZP,X	INC ZP,X	<b>BBC</b> 7,ZP	SED	SBC ABS,Y		<b>CLB</b> 7,A		SBC ABS,X	INC ABS,X	<b>CLB</b> 7,ZP

### 6.11 Mask ROM ordering method

### 6.11 Mask ROM ordering method

When placing an order, please submit the information described below.

 M37221M4-XXXSP Mask ROM Ordering Confirmation Form......1 set (Please use the pages P6-65 to P6-67) M27221M8-XXXSP Mask ROM Ordering Confirmation Form......1 set (Please use the pages P6-68 to P6-70) M37221M6-XXXSP/FP Mask ROM Ordering Confirmation Form......1 set (Please use the pages P6-71 to P6-73) M27221MA-XXXSP Mask ROM Ordering Confirmation From......1 set (Please use the pages P6-74 to P6-76) M27220M3-XXXSP/FP Mask ROM Ordering Confirmation From......1 set (Please use the pages P6-74 to P6-76)
 M27220M3-XXXSP/FP Mask ROM Ordering Confirmation From......1 set (Please use the pages P6-77 to P6-79)
 Data to be written to mask ROM.......EPROM (DIP Type 27C101) (Please provide 3 sets containing the identical data)

(Please use the pages P6-80 and P6-81)

![](_page_282_Picture_7.jpeg)

#### 6.11 Mask ROM ordering method

GZZ-SH10-10B < 59B0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M4-XXXSP MITSUBISHI ELECTRIC

Mask R	OM number										
	Date :										
t	Section head signature	Supervisor signature									
Receip											

Note : Please fill in all items marked *.

		Company		TEL			Submitted by	Supervisor
*	Customer	name		(	)	ance ature		
		Date issued	Date :			lssu sign		

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

![](_page_283_Picture_11.jpeg)

EPROM type (indicate the type used)

![](_page_283_Figure_13.jpeg)

- (1) Set "FF16" in the shaded area.
- (2) Write the ASCII codes that indicates the product name of "M37221M4-" to addresses 000016 to 000F16.

- Do you set "FF16" in the shaded area ?
- ed area ?  $\rightarrow$  Yes  $\square$
- Do you write the ASCII codes that indicates the product name of "M37221M4-" to addresses  $0000_{16}$  to  $000F_{16}$ ?  $\rightarrow$  Yes

# 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37221M4-XXXSP) and attach to the mask ROM confirmation form.

# 3. Comments

#### 6.11 Mask ROM ordering method

GZZ-SH10-10B <59B0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M4-XXXSP MITSUBISHI ELECTRIC

#### Writing the product name and character ROM data onto EPROMs

Addresses 000016 to 000F16 store the product name, and addresses 10000 16 to 11FFF16 store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

- Address Address 1. Inputting the name of the product with the ASCII code 'M' = 4 D ₁₆ 000016 000816 '–' = 2 D ₁₆ ASCII codes 'M37221M4-' are listed on the right. '3' = 3 3 ₁₆ FF 16 000116 000916 The addresses and data are in hexadecimal notation. '7' = 3 7₁₆ FF 16 000216 000A16 000316 '2' = 3 2 ₁₆ 000B16 F F 16 **'2' = 3** 2 ₁₆ F F <u>16</u> 000416 000C16 F F <u>16</u> '1' = 3 <u>1</u> 16 000516 000D16 FF 16 000616 'M' = 4 D ₁₆ 000E16 000716 '4' = 3 4 ₁₆ 000F16 FF 16 com.
- 2. Inputting the character ROM Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data, see the next page and on.

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M4-XXXSP MITSUBISHI ELECTRIC

The structure of character ROM (divided of 12 X16 dots font)

![](_page_285_Figure_5.jpeg)

### 6.11 Mask ROM ordering method

GZZ-SH11-58B < 72A0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M8-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

![](_page_286_Figure_5.jpeg)

Note : Please fill in all items marked *

		Company		TEL			Submitted by	Supervisor
	_	name		(	)	nce ture		
*	Customer	Date				lssua signa		
		issued	Date :			_ 0,		

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)

![](_page_286_Picture_15.jpeg)

(1) Set "FF₁₆" in the shaded area.

(2) Write the ASCII codes that indicates the product name of "M37221M8-" to addresses 000016 to 000F16.

Do you set "FF₁₆" in the shaded area ? → Yes □
 Do you write the ASCII codes that indicates the product name of "M37221M8–" to addresses 0000₁₆ to 000F₁₆? → Yes □

# 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37221M8-XXXSP) and attach to the mask ROM confirmation form.

* 3. Comments

GZZ-SH11-58B <72A0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M8-XXXSP MITSUBISHI ELECTRIC

#### Writing the product name and character ROM data onto EPROMs

Addresses 000016 to 000F16 store the product name, and addresses 10000 16 to 11FFF16 store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

1.	Inputting the name of the product with the ASCII code	Address		Address	
	ASCII codes 'M37221M8-' are listed on the right.	000016	'M' = 4 D ₁₆	000816	'–' = 2 D ₁₆
	The addresses and data are in hexadecimal notation.	<b>0001</b> 16	'3' = 3 3 ₁₆	000916	F F 16
		000216	'7' = 3 7 ₁₆	000A16	F F ₁₆
		000316	<b>'2'</b> = 3 2 ₁₆	000B16	F F ₁₆
		000416	'2' = 3 2 ₁₆	000C16	F F 16
		000516	'1' <b>=</b> 3 1 ₁₆	000D16	F F 16
		000616	'M' = 4 D ₁₆	💧 000E16	FF 16
		000716	'8' = 3 <b>8</b> ₁₆	000F16	F F ₁₆
2	Inputting the character ROM		m.		
		<b></b>			

Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data, see the next page and on.
# **APPENDIX** 6.11 Mask ROM ordering method

GZZ-SH11-58B< 72A0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M8-XXXSP MITSUBISHI ELECTRIC



#### 6.11 Mask ROM ordering method

GZZ-SH09-46B < 52C0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M6-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number						
	Date :					
Ť.	Section head signature	Supervisor signature				
ceip						
Re						

Note : Please fill in all items marked *

	Customer	Company name	mpany TEL		Submitted by	Supervisor
*				( )	ance ature	
		Date issued	Date :			lssu sign

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)



(1) Set "FF16" in the shaded area.

(2) Write the ASCII codes that indicates the product name of "M37221M6-" to addresses 000016 to 000F16.

EPROM data check item (Refer the EPROM data and check " ✓" in the appropriate box)

- Do you set "FF16" in the shaded area ?
- Do you write the ASCII codes that indicates the product

name of "M37221M6-" to addresses 0000 to 000F to  $\rightarrow$  Yes

# 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37221M6-XXXSP, 42P2R-A for M37221M6-XXXFP) and attach to the mask ROM confirmation form.

 $\rightarrow$  Yes

# 3. Comments

GZZ-SH09-46B <52C0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M6-XXXSP/FP MITSUBISHI ELECTRIC

#### Writing the product name and character ROM data onto EPROMs

Addresses 0000₁₆ to 000F₁₆ store the product name, and addresses 10000₁₆ to 11FFF₁₆ store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

1.	Inputting the name of the product with the ASCII code	e Address		Address	
	ASCII codes 'M37221M6-' are listed on the right.	000016	'M' = 4 D ₁₆	000816	'–' = 2 D ₁₆
	The addresses and data are in hexadecimal notation	<b>0001</b> 16	'3' = 3 3 ₁₆	000916	F F ₁₆
		000216	'7' = 3 7 ₁₆	000A16	F F 16
		000316	'2' = 3 <b>2</b> ₁₆	000B16	F F ₁₆
		000416	'2' = 3 2 ₁₆	000C16	F F ₁₆
		000516	<b>'1'</b> = 3 <u>1</u> ₁₆	000D16	F F 16
		000616	'M' = 4 D ₁₆	000E16	FF 16
		000716	'6' = 3 6 ₁₆	000F16	F F ₁₆
		con			

2. Inputting the character ROM Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data, see the next page and on.

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221M6-XXXSP/FP MITSUBISHI ELECTRIC



#### 6.11 Mask ROM ordering method

GZZ-SH10-46B < 5ZA0 >

#### SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221MA-XXXSP MITSUBISHI ELECTRIC

Mask R		
	Date :	
	Section head	Suponvicor



Note : Please fill in all items marked *.

*	Customer .	Company name	Company TEL			Submitted by	Supervisor
				(	)	Issuance signature	
		Date issued	Date :				

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type (indicate the type used)



(1) Set "FF16" in the shaded area.

(2) Write the ASCII codes that indicates the product name of "M37221MA-" to addresses 0000 16 to 000F16.

EPROM data check item (Refer the EPROM data and check " </ >

- Do you set "FF16" in the shaded area ?
- $\rightarrow$  Yes  $\square$
- Do you write the ASCII codes that indicates the product name of "M37221MA–" to addresses 0000 16 to 000F16 ? → Yes □

# 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37221MA-XXXSP) and attach to the mask ROM confirmation form.

# 3. Comments

GZZ-SH10-46B <5ZA0 >

#### SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221MA-XXXSP MITSUBISHI ELECTRIC

#### Writing the product name and character ROM data onto EPROMs

Addresses 000016 to 000F16 store the product name, and addresses 1000016 to 11FFF16 store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

- Address Address 1. Inputting the name of the product with the ASCII code 000016  $'M' = 4 D_{16}$ 000816  $'-' = 2 D_{16}$ ASCII codes 'M37221MA-' are listed on the right. **0001**16 '3' = 3 3 ₁₆ F F <u>16</u> 000916 The addresses and data are in hexadecimal notation. F F ₁₆  $(7) = 37_{16}$ 000216 000A16 F F <u>16</u> 000316  $2' = 32_{16}$ 000B16 F F _16 **'2'** = 3 2 ₁₆ 000416 000C16 F F <u>16</u> '1' = **3**1₁₆ 000516 000D16 000616  $'M' = 4 D_{16}$ 000E16 FF 16 3 3 12 CON A' = 4 1 16 F F ₁₆ 000F16
- 2. Inputting the character ROM Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data, see the next page and on.

#### 6.11 Mask ROM ordering method

GZZ-SH10-46B< 5ZA0 >

#### SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37221MA-XXXSP MITSUBISHI ELECTRIC



#### 6.11 Mask ROM ordering method

GZZ-SH09-72B < 56B0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37220M3-XXXSP MITSUBISHI ELECTRIC

Mask R	OM number	
	Date :	
Ŧ	Section head signature	Supervisor signature
sceip		
Re		
	1	

Note : Please fill in all items marked *.

		Company		TEL				Submitted by	Supervisor
*	Customer	name	(	(	)	ance	ature		
		Date issued	Date :			Issua signa	5		

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM



(hexadecimal notation)

EPROM type (indicate the type used)



(1) Set "FF16" in the shaded area.

(2) Write the ASCII codes that indicates the product name of "M37220M3–" to addresses 000016 to 000F16.

EPROM data check item (Refer the EPROM data and check "  $\checkmark$  " in the appropriate box)

- Do you set "FF 16" in the shaded area ?
- $\rightarrow$  Yes  $\square$

 $\rightarrow$  Yes  $\square$ 

- Do you write the ASCII codes that indicates the product name of "M37220M3–" to addresses 000016 to 000F16?
- # 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (42P4B for M37220M3-XXXSP) and attach to the mask ROM confirmation form.

# 3. Comments

# **APPENDIX** 6.11 Mask ROM ordering method

GZZ-SH09-72B <56B0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37220M3-XXXSP MITSUBISHI ELECTRIC

#### Writing the product name and character ROM data onto EPROMs

Addresses 0000₁₆ to 000F₁₆ store the product name, and addresses 10000₁₆ to 10FFF₁₆ store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

1.	Inputting the name of the product with the ASCII code	Address		Address	
	ASCII codes 'M37220M3-' are listed on the right.	000016	'M' = 4 D ₁₆	000816	'–' = 2 D ₁₆
	The addresses and data are in hexadecimal notation	<b>0001</b> 16	'3' = 3 3 ₁₆	000916	F F 16
		000216	'7' = 3 7 ₁₆	000A16	F F 16
		000316	<b>'2'</b> = 3 2 ₁₆	000B16	F F 16
		000416	<b>'2'</b> = 3 2 ₁₆	000C16	F F 16
		000516	$0' = 30_{16}$	000D16	F F ₁₆
		000616	'M' = 4 D ₁₆	000E16	FF 16
		000716	'3' = 3 3 ₁₆	000F16	F F ₁₆
		32 3	m.		
		.00			

2. Inputting the character ROM Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data, see the next page and on.

#### 6.11 Mask ROM ordering method

GZZ-SH09-72B< 56B0 >

#### 740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37220M3-XXXSP MITSUBISHI ELECTRIC



### 6.12 Mark specification form

### 6.12 Mark specification form

#### 42P4B (42-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).



2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

The standard Mitsubishi font is used for all characters except for a logo.

Special logo required

#### 42P2R-A (42-PIN SHRINK SOP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed). A. Standard Mitsubishi Mark Ø ۰ Mitsubishi IC catalog name Mitsubishi IC catalog name Mitsubishi lot number (6-digit or 7-digit) 39. 38 18 B. Customer's Parts Number + Mitsubishi catalog name Customer's Parts Number Note: The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name Note1 : The mark field should be written right aligned. 2: The fonts and size of characters are standard Mitsubishi type. Mitsubishi lot numbe (6-digit or 7-digit) 3: Customer's Parts Number can be up to 11 characters : Only  $0 \sim 9$ ,  $A \sim Z$ , +, -, /, (, ), &,  $\bigcirc$ ,  $\cdot$ (periods), (commas) are usable. 4: If the Mitsubishi logo A is not required, check the box below. A Mitsubishi logo is not required C. Special Mark Required Note1 : If the Special Mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked. 2: If the customer's trade mark logo must be used in the Special Mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted. Special logo required 3: The standard Mitsubishi font is used for all characters except for a logo.



#### MITSUBISHI SEMICONDUCTORS USER'S MANUAL 7220 Group

Jul. First Edition 1997

Editioned by Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©1997 MITSUBISHI ELECTRIC CORPORATION

User's Manual 7220 Group



# RenesasTechnologyCorp. Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

### **REVISION DESCRIPTION LIST**

### 7220 GROUP USER'S MANUAL

		1
Rev. No.	Revision Description	Rev. date
1.0	First Edition	9708
2.0	Information about copywright note, revision number, release date added (last page).	971130
2.0	Internation about copywright note, revision humber, release date added (last page).	