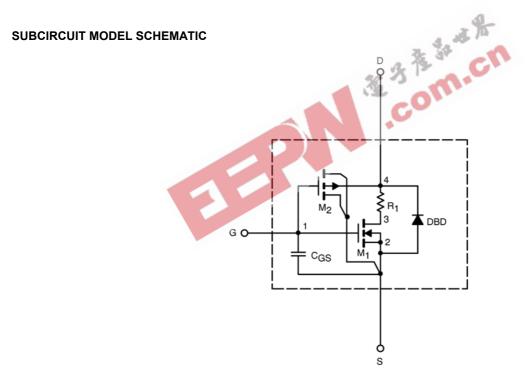


SPICE Device Model SUP80N15-20L

Vishay Siliconix

N-Channel 150-V (D-S) 175°C MOSFET

CHARACTERISTICS


- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to $125^{\circ}\mathrm{C}$ temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

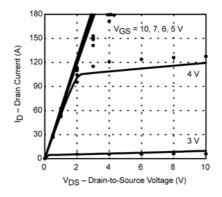
Document Number: 72425 12-Jun-04

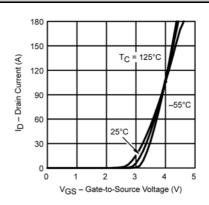
SPICE Device Model SUP80N15-20L

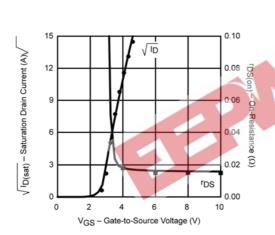
Vishay Siliconix

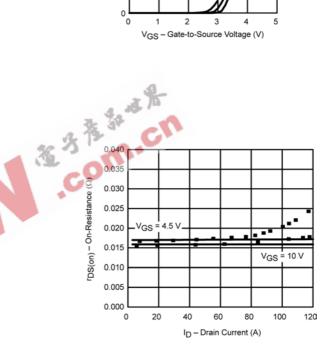
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.7		٧
On-State Drain Current ^a	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	314		Α
Drain-Source On-State Resistance ^a		V _{GS} = 10 V, I _D = 30 A	0.016	0.016	Ω
		V _{GS} = 10 V, I _D = 30 A, T _J = 125°C	0.023		
	r _{DS(on)}	V _{GS} = 10 V, I _D = 30 A, T _J = 175°C	0.026		
		$V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$	0.017		
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 30 A	93		S
Forward Voltage ^a	V_{SD}	I _S = 80 A, V _{GS} = 0 V	0.92	1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz 510 320	6590	6500	Pf
Output Capacitance	C _{oss}		510	520	
Reverse Transfer Capacitance	C_{rss}		270	1	
Total Gate Charge ^c	Qg	26 3	114	110	NC
Gate-Source Charge ^c	Q_gs	$V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 80 \text{ A}$	21	21	
Gate-Drain Charge ^c	Q_{gd}	and Co	33	33	
Turn-On Delay Time ^c	t _{d(on)}		176	20	- Ns
Rise Time ^c	t _r	V_{DD} = 50 V, R_{L} = 0.93 Ω	43	100	
Turn-Off Delay Time ^c	t _{d(off)}	$I_D = 80 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 2.5 \Omega$ 43 49	43	70	
Fall Time ^c	t _f		135]	

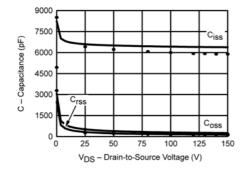
Notes

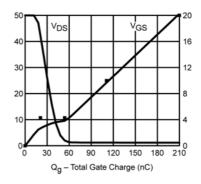

- a.
- Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. Guaranteed by design, not subject to production testing. Independent of operating temperature. b.


www.vishay.com Document Number: 72425




SPICE Device Model SUP80N15-20L Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (T_J =25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data

Document Number: 72425 www.vishay.com 12-Jun-04