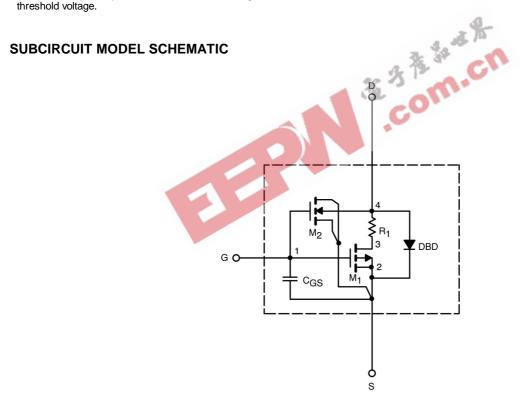


SPICE Device Model Si4921DY

Vishay Siliconix

Dual P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS


- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{qd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

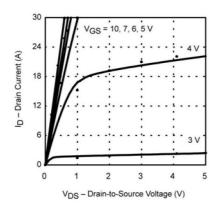
Document Number: 72299 www.vishay.com

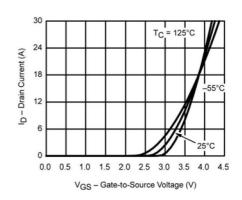
..lodel Si4911DY

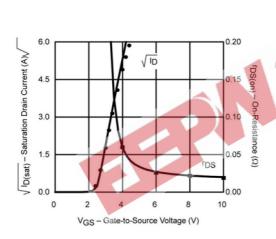
Vishay Siliconix

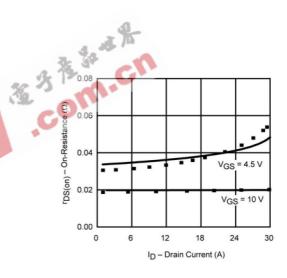
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	2.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	234		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -7.3 \text{ A}$	0.020	0.020	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -5.6 \text{ A}$	0.035	0.033	
Forward Transconductance ^a	g fs	$V_{DS} = -10 \text{ V}, I_{D} = -7.3 \text{ A}$	18	16	S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = -1.7 \text{ A}, V_{GS} = 0 \text{ V}$	-0.80	-0.80	V
Dynamic ^b					
Total Gate Charge	Qg		32	33	
Gate-Source Charge	Q_{gs}	$V_{DS} = -15 \text{ V}, V_{GS} = -105 \text{ V}, I_D = -7.34 \text{ A}$	5.8	5.8	nC
Gate-Drain Charge	Q_{gd}		8.6	8.6	
Turn-On Delay Time	t _{d(on)}	V_{DD} = -15 V, R_L = 15 Ω I_D \cong -1 A, V_{GEN} = -10 V, R_G = 6 Ω	20	10	ns
Rise Time	t _r		15	15	
Turn-Off Delay Time	$t_{d(off)}$		178	110	
Fall Time	t _f		34	70	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -1.7 \text{ A, di/dt} - 100 \text{ A/}\mu\text{s}$	55	60	

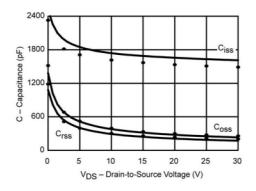
- a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing.

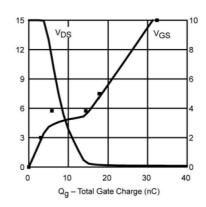

www.vishay.com Document Number: 72299




SPICE Device Model Si4921DY


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data