

January 1988 Revised July 1999

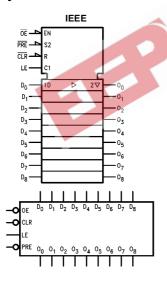
# 74F8439-Bit Transparent Latch

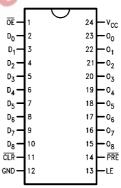
#### **General Description**

#### **Features**

The 74F843 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity.

■ 3-STATE output


#### **Ordering Code:**


| Order Number | Package Number | Package Description                                                       |
|--------------|----------------|---------------------------------------------------------------------------|
| 74F843SC     | M24B           | 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide |
| 74F843SPC    | N24C           | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide     |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering cod

#### **Logic Symbols**

### **Connection Diagram**

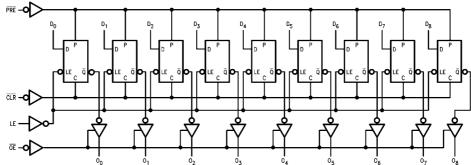




#### **Unit Loading/Fan Out**

| Din Names                      | Danasis dan          | U.L.     | Input I <sub>IH</sub> /I <sub>IL</sub>  |  |
|--------------------------------|----------------------|----------|-----------------------------------------|--|
| Pin Names                      | Description          | HIGH/LOW | Output I <sub>OH</sub> /I <sub>OL</sub> |  |
| D <sub>0</sub> -D <sub>8</sub> | Data Inputs          | 1.0/1.0  | 20 μA/-0.6 mA                           |  |
| ŌĒ                             | Output Enable Input  | 1.0/1.0  | 20 μA/-0.6 mA                           |  |
| LE                             | Latch Enable         | 1.0/1.0  | 20 μA/-0.6 mA                           |  |
| CLR                            | Clear                | 1.0/1.0  | 20 μA/-0.6 mA                           |  |
| PRE                            | Preset               | 1.0/1.0  | 20 μA/-0.6 mA                           |  |
| O <sub>0</sub> –O <sub>8</sub> | 3-STATE Data Outputs | 150/40   | −3 mA/24 mA                             |  |

#### **Functional Description**


The 74F843 consists of nine D-type latches with 3-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ( $\overline{OE}$ ) is LOW. When  $\overline{OE}$  is HIGH, the bus output is in the high impedance state. In addition to the LE and OE pins, the 74F843 has a Clear (CLR) pin and a Preset (PRE). These pins are ideal for parity bus interfacing in high performance systems. When CLR is LOW, the outputs are LOW if OE is LOW. When CLR is HIGH, data can be entered into the latch. When PRE is LOW, the Outputs are HIGH if OE is LOW. Preset overrides CLR.

#### **Function Table**

|     | I   | nputs        | ;  |        | Internal | Output | Function    |
|-----|-----|--------------|----|--------|----------|--------|-------------|
| CLR | PRE | OE           | LE | D      | Q        | 0      | Function    |
| Н   | Н   | Χ            | Х  | Χ      | X        | Z      | High Z      |
| Н   | Н   | Н            | HI | F (200 | L        | Z      | High Z      |
| Н   | H 3 | <b>э</b> н ∛ | Н  | H      | (CH      | Z      | High Z      |
| H   | H   | H            | ٨. | X      | NC       | Z      | Latched     |
| H   | Н   | 4            | H  | L      | L        | L      | Transparent |
| Н   | H   | L.           | Н  | Н      | Н        | Н      | Transparent |
| Н 1 | Н   | L            | L  | Χ      | NC       | NC     | Latched     |
| Н   | L   | L            | Χ  | Χ      | Н        | Н      | Preset      |
| L   | Н   | L            | X  | X      | L        | L      | Clear       |
| L   | L   | L            | Χ  | Χ      | Н        | Н      | Preset      |
| L   | Н   | Н            | L  | Χ      | L        | Z      | Latched     |
| Н   | L   | Н            | L  | Χ      | Н        | Z      | Latched     |

- H = HIGH Voltage Level
- L = LOW Voltage Level X = Immaterial
- Z = High Impedance NC = No Change

#### **Logic Diagram**



#### **Absolute Maximum Ratings**(Note 1)

Storage Temperature  $-65^{\circ}\text{C}$  to  $+150^{\circ}\text{C}$ Ambient Temperature under Bias  $-55^{\circ}\text{C}$  to  $+125^{\circ}\text{C}$ 

Voltage Applied to Output

in HIGH State (with  $V_{CC} = 0V$ )

Standard Output -0.5V to  $V_{CC}$ 3-STATE Output -0.5V to +5.5V

Current Applied to Output

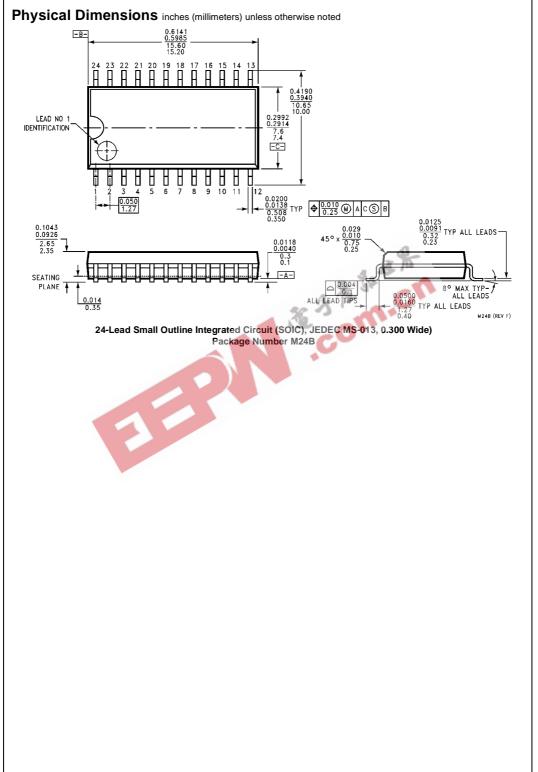
in LOW State (Max)  $\qquad \qquad \text{twice the rated I}_{\text{OL}} \, (\text{mA})$ 

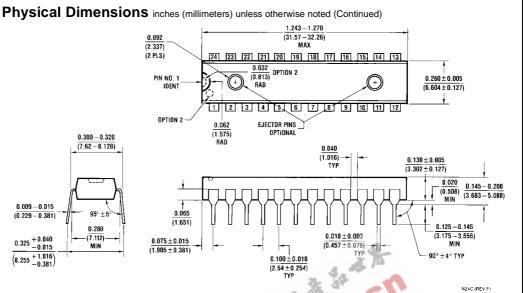
## Recommended Operating Conditions

Free Air Ambient Temperature  $0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}$  Supply Voltage +4.5V to +5.5V

**Note 1:** Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


#### **DC Electrical Characteristics**


| Symbol           | Parameter                    |                     | Parameter Min Typ Max U |    | Units | V <sub>CC</sub> | Conditions |                             |
|------------------|------------------------------|---------------------|-------------------------|----|-------|-----------------|------------|-----------------------------|
| V <sub>IH</sub>  | Input HIGH Voltage           |                     | 2.0                     |    |       | V               | 15 /       | Recognized as a HIGH Signal |
| V <sub>IL</sub>  | Input LOW Voltage            |                     |                         |    | 0.8   | V               | 3-         | Recognized as a LOW Signal  |
| V <sub>CD</sub>  | Input Clamp Diode Voltage    |                     |                         |    | -1.2  | V               | Min        | I <sub>IN</sub> = -18 mA    |
| V <sub>OH</sub>  | Output HIGH                  | 10% V <sub>CC</sub> | 2.5                     |    | 20 1  | 1               | A          | I <sub>OH</sub> = -1 mA     |
|                  | Voltage                      | 10% $V_{\rm CC}$    | 2.4                     |    | 32    | V               | Min        | $I_{OH} = -3 \text{ mA}$    |
|                  |                              | 5% V <sub>CC</sub>  | 2.7                     |    |       | .0"             |            | $I_{OH} = -1 \text{ mA}$    |
|                  |                              | 5% V <sub>CC</sub>  | 2.7                     |    |       | -               |            | $I_{OH} = -3 \text{ mA}$    |
| V <sub>OL</sub>  | Output LOW Voltage           | 10% V <sub>CC</sub> |                         |    | 0.5   | V               | Min        | I <sub>OL</sub> = 24 mA     |
| I <sub>IH</sub>  | Input HIGH Current           |                     |                         |    | 5.0   | μΑ              | Max        | $V_{IN} = 2.7V$             |
| I <sub>BVI</sub> | Input HIGH Current           |                     |                         |    | 7.0   | μΑ              | Max        | V <sub>IN</sub> = 7.0V      |
|                  | Breakdown Test               |                     |                         |    |       |                 |            |                             |
| I <sub>CEX</sub> | Output HIGH                  |                     |                         | -  | 50    | μΑ              | Max        | $V_{OUT} = V_{CC}$          |
|                  | Leakage Current              |                     |                         |    |       |                 |            |                             |
| V <sub>ID</sub>  | Input Leakage                |                     | 4.75                    |    |       | V               | 0.0        | $I_{ID} = 1.9 \mu A$        |
|                  | Test                         |                     |                         |    |       |                 |            | All other pins grounded     |
| I <sub>OD</sub>  | Output Leakage               |                     |                         |    | 3.75  | μΑ              | 0.0        | V <sub>IOD</sub> = 150 mV   |
|                  | Circuit Current              |                     |                         |    |       |                 |            | All other pins grounded     |
| I <sub>IL</sub>  | Input LOW Current            |                     |                         |    | -0.6  | mA              | Max        | $V_{IN} = 0.5V$             |
| I <sub>OZH</sub> | Output Leakage Current       |                     |                         |    | 50    | μΑ              | Max        | V <sub>OUT</sub> = 2.7V     |
| I <sub>OZL</sub> | Output Leakage Current       |                     |                         |    | -50   | μΑ              | Max        | V <sub>OUT</sub> = 0.5V     |
| Ios              | Output Short-Circuit Current |                     | -60                     |    | -150  | mA              | Max        | V <sub>OUT</sub> = 0V       |
| I <sub>ZZ</sub>  | Bus Drainage Test            |                     |                         |    | 500   | μΑ              | 0.0V       | V <sub>OUT</sub> = 5.25V    |
| I <sub>CC</sub>  | Power Supply Current         |                     |                         | 65 | 90    | mA              | Max        |                             |

|                  | Parameter                    |     | $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$ |      |     | $T_A = 0$ °C to $+70$ °C $V_{CC} = +5.0V$ $C_L = 50$ pF |    |  |
|------------------|------------------------------|-----|-------------------------------------------------------------|------|-----|---------------------------------------------------------|----|--|
| Symbol           |                              |     |                                                             |      |     |                                                         |    |  |
|                  |                              | Min | Тур                                                         | Max  | Min | Max                                                     | ĺ  |  |
| t <sub>PLH</sub> | Propagation Delay            | 2.5 | 5.4                                                         | 8.0  | 2.0 | 9.0                                                     |    |  |
| t <sub>PHL</sub> | $D_n$ to $O_n$               | 1.5 | 4.2                                                         | 6.5  | 1.5 | 7.0                                                     | '  |  |
| t <sub>PLH</sub> | Propagation Delay            | 5.0 | 8.5                                                         | 12.0 | 4.5 | 13.5                                                    | Ι. |  |
| t <sub>PHL</sub> | LE to O <sub>n</sub>         | 2.0 | 4.7                                                         | 7.5  | 2.0 | 8.0                                                     | ns |  |
| t <sub>PLH</sub> | Propagation Delay PRE to On  | 3.0 | 7.3                                                         | 10.0 | 2.5 | 11.0                                                    | ı  |  |
| t <sub>PHL</sub> | Propagation Delay  CLR to On | 3.0 | 6.9                                                         | 10.0 | 2.5 | 11.0                                                    | ı  |  |
| t <sub>PZH</sub> | Output Enable Time           | 2.5 | 5.0                                                         | 8.5  | 2.0 | 9.5                                                     |    |  |
| $t_{PZL}$        | OE to O <sub>n</sub>         | 2.5 | 6.1                                                         | 9.0  | 2.0 | 10.0                                                    |    |  |
| t <sub>PHZ</sub> | Output Disable Time          | 1.0 | 3.6                                                         | 6.5  | 1.0 | 7.5                                                     |    |  |
| t <sub>PLZ</sub> | OE to On                     | 1.0 | 3.4                                                         | 6.5  | 1.0 | 7.5                                                     | n  |  |

## AC Operating Requirements

| ļ                  |                         | 40c 3V                  |                               |       |
|--------------------|-------------------------|-------------------------|-------------------------------|-------|
|                    |                         | T <sub>A</sub> = +25°C  | T <sub>A</sub> = 0°C to +70°C | Units |
| Symbol             | Parameter               | V <sub>CC</sub> = +5.0V | V <sub>CC</sub> = +5.0V       |       |
|                    |                         | Min Max                 | Min Max                       |       |
| t <sub>S</sub> (H) | Setup Time, HIGH or LOW | 2.0                     | 2.5                           |       |
| t <sub>S</sub> (L) | D <sub>n</sub> to LE    | 2.0                     | 2.5                           | ns    |
| t <sub>H</sub> (H) | Hold Time, HIGH or LOW  | 2.5                     | 3.0                           | 113   |
| t <sub>H</sub> (L) | D <sub>n</sub> to LE    | 3.0                     | 3.5                           |       |
| t <sub>W</sub> (H) | LE Pulse Width, HIGH    | 4.0                     | 4.0                           | ns    |
| t <sub>W</sub> (L) | PRE Pulse Width, LOW    | 5.0                     | 5.0                           | ns    |
| t <sub>W</sub> (L) | CLR Pulse Width, LOW    | 5.0                     | 5.0                           | ns    |
| t <sub>REC</sub>   | PRE Recovery Time       | 10.0                    | 10.0                          | ns    |
| t <sub>REC</sub>   | CLR Recovery Time       | 12.0                    | 13.0                          | ns    |





24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com