FAIRCHILD

SEMICONDUCTOR

74F2244 **Octal Buffer/Line Driver** with 25 Ω Series Resistors in Outputs

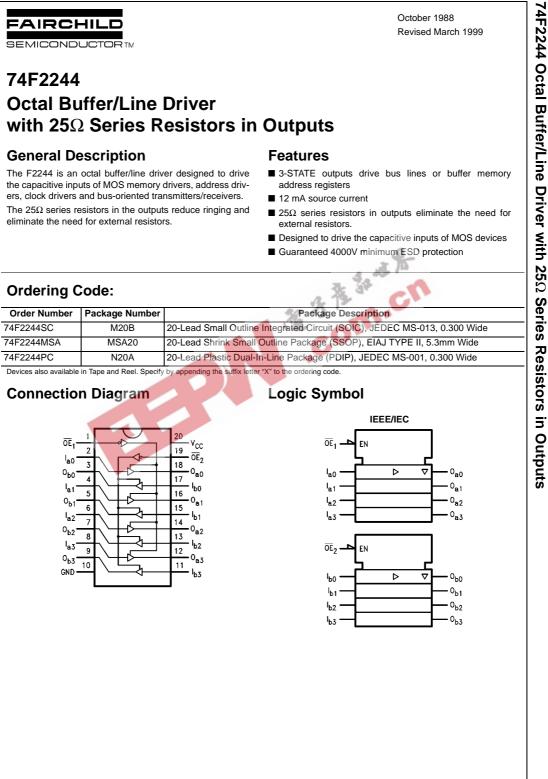
General Description

The F2244 is an octal buffer/line driver designed to drive the capacitive inputs of MOS memory drivers, address drivers, clock drivers and bus-oriented transmitters/receivers.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Features

■ 3-STATE outputs drive bus lines or buffer memory address registers


October 1988

Revised March 1999

- 12 mA source current
- **\blacksquare** 25 Ω series resistors in outputs eliminate the need for
- external resistors.
- Designed to drive the capacitive inputs of MOS devices
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F2244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F2244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F2244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also evoilable	in Tono and Bool Specifi	(by appending the suffix letter "V" to the ordering code

DS009499.prf © 1999 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Unit Loading/Fan Out

	Pin Names	Description	U.L.	Input I _{IH} /I _{IL}
			HIGH/LOW	Output I _{OH} /I _{OL}
	$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Input (Active LOW)	1.0/1.667	20 µA/–1 mA
	OE ₂	3-STATE Output Enable Input (Active HIGH)	1.0/1.667	20 µA/–1 mA
	I _{an} , I _{bn}	Inputs	1.0/2.667 (Note 1)	20 µA/–1.6 mA
	O _{an} ,O _{bn}	Outputs	750/20	–15 mA/12 mA
te 1: Worst-	case F2244 disat	led		

Truth Table

74F2244

OE ₁	l _{an}	O _{an}	OE ₂	I _{bn}	O _{bn}
н	х	Z	Н	х	Z
L	н	н	L	н	н
L	L	L	L	L	L
ıl edance			海为春	Se te Mar	

X = Immaterial Z = High Impedance

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

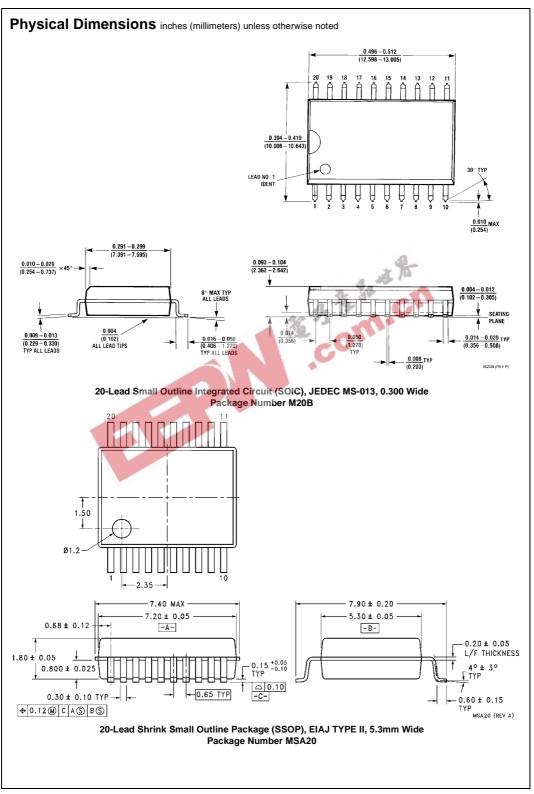
	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 3)	-0.5V to +7.0V
Input Current (Note 3)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated $I_{OL}\ (mA)$
ESD Last Passing Voltage (Min)	4000V
	Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 3) Input Current (Note 3) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max)

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

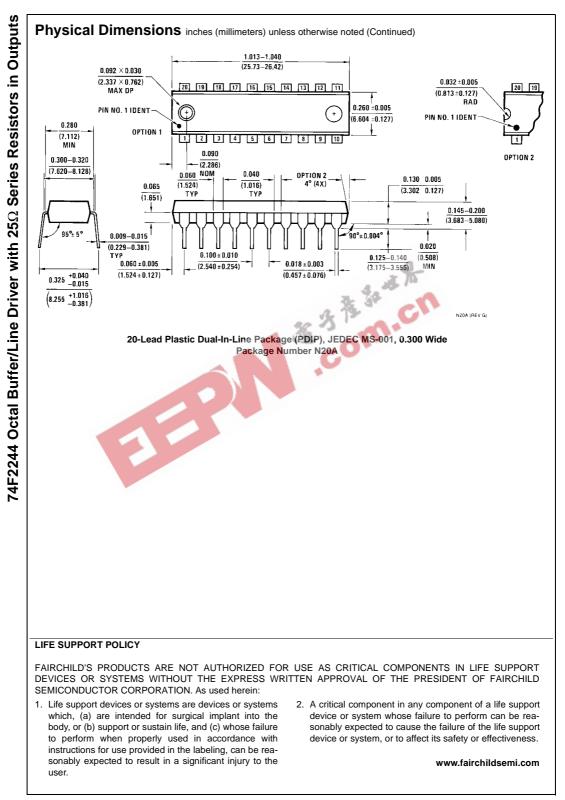
74F2244

0°C to +70°C +4.5V to +5.5V


Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions
VIH	Input HIGH Voltage	2.0			V	-	Recognized as a HIGH Signal
VIL	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage 10% V _{CC}	2.4		132	V	Min	I _{OH} = -3 mA
	10% V _{CC}	2.0			0		I _{OH} = -15 mA
	5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage			0.50	V	Min	I _{OL} = 1 mA
				0.75			$I_{OL} = 12 \text{ mA}$
IIH	Input HIGH Current			5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μA	Max	V _{IN} = 7.0V
ICEX	Output HIGH Leakage Current		-	50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$
	Test						All other pins grounded
I _{OD}	Output Leakage			3.75	μA	0.0	V _{IOD} = 150 mV
	Circuit Current						All other pins grounded
IIL	Input LOW Current			-1.0	mA	Max	$V_{IN} = 0.5V (\overline{OE}_1, \overline{OE}_2, OE_2)$
				-1.6			$V_{IN} = 0.5V (I_n)$
I _{OZH}	Output Leakage Current			50	μA	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current			-50	μA	Max	$V_{OUT} = 0.5V$
los	Output Short-Circuit Current	-100		-225	mA	Max	$V_{OUT} = 0V$
ICCH	Power Supply Current		40	60	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		60	90	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current		60	90	mA	Max	$V_{\Omega} = HIGH Z$

			T _A = +25°C	$T_{A} = -55^{\circ}$	5 to +125°C	$T_A = 0^{\circ}C$	10 +70 C	
			$V_{CC} = +5.0V$	C ₁ =	50 pF	C ₁ =	50 pF	
Symbol	Parameter		C _L = 50 pF	-		-		Units
		Min	Тур Мах	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.5	7.0	2.0	6.5	1.5	7.0	ns
t _{PHL}	Data to Output	2.5	8.0	2.0	7.0	2.0	8.0	
t _{PZH}	Output Enable Time	1.5	9.0	2.0	7.0	1.0	9.5	
t _{PZL}		2.5	11.5	2.0	8.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.5	9.0	2.0	7.0	1.0	9.5	
t _{PLZ}		1.5	8.5	2.0	7.5	1.5	9.5	
			. The second sec					

74F2244

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.