

54F/74F533 Octal Transparent Latch with TRI-STATE® Outputs

General Description

The 'F533 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\text{OE}}$) is LOW. When $\overline{\text{OE}}$ is HIGH the bus output is in the high impedance state. The 'F533 is the same as the 'F373, except that the outputs are inverted.

Features

- Eight latches in a single package
- TRI-STATE outputs for bus interfacing
- Inverted version of the 'F373
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description			
74F533PC		N20A 20-Lead (0.300" Wide) Molded Dual-In-Line				
	54F533DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line			
74F533SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC			
74F533SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ			
	54F533FM (Note 2)	W20A	20-Lead Cerpack			
	54F533LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

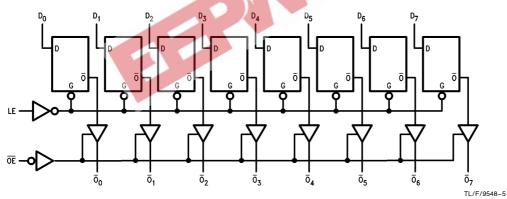
Connection Diagrams

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
D ₀ -D ₇ LE	Data Inputs Latch Enable Input (Active HIGH)	1.0/1.0 1.0/1.0	20 μA/ – 0.6 mA 20 μA/ – 0.6 mA			
\overline{OE} $\overline{O}_0 - \overline{O}_7$	Output Enable Input (Active LOW) Complementary TRI-STATE Outputs	1.0/1.0 150/40 (33.3)	20 μA/ – 0.6 mA – 3 mA/24 mA (20 mA)			

Function Table

	Output		
LE	ŌĒ	D	ō
Н	L	Н	L
Н	L	L	Н
L	L	X	Ō ₀
X	Н	Χ	Z


H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Functional Description

The 'F533 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the $D_{\rm n}$ inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$

 $\begin{array}{lll} \text{V}_{\text{CC}} \text{ Pin Potential to} & & & \\ \text{Ground Pin} & & -0.5 \text{V to} + 7.0 \text{V} \\ \text{Input Voltage (Note 2)} & & -0.5 \text{V to} + 7.0 \text{V} \\ \text{Input Current (Note 2)} & & -30 \text{ mA to} + 5.0 \text{ mA} \\ \end{array}$

Voltage Applied to Output in HIGH State (with V_{CC} = 0V)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

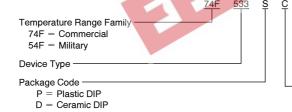
Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V _{CC}	Conditions	
			Min Typ M		Max	13	100		
V _{IH}	Input HIGH Voltage		2.0		32	V	11.	Recognized as a HIGH Signal	
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{\text{IN}} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{BVIT}	Input HIGH Current Breakdown (I/O)	54F 74F			1.0 0.5	mA	Max	V _{IN} = 5.5V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
lozh	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V	
lozL	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$	
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
Iccz	Power Supply Current	t		41	61	mA	Max	V _O = HIGH Z	

AC Electrical Characteristics

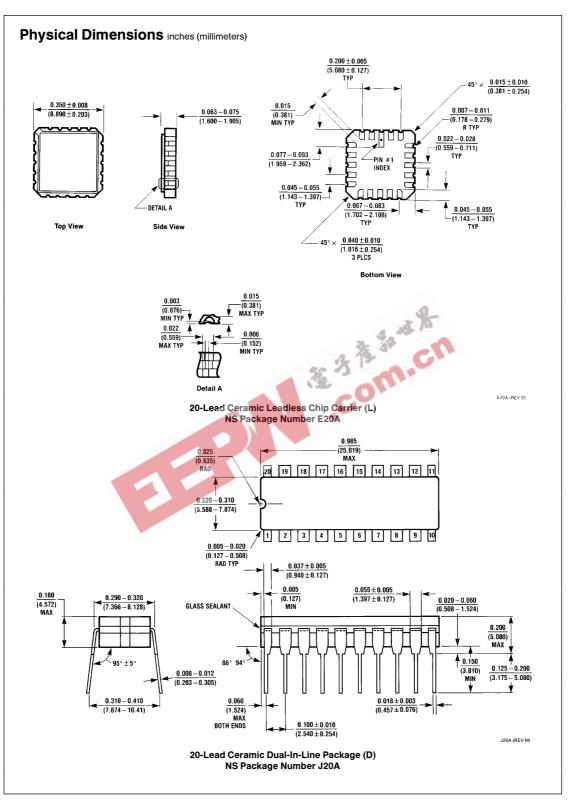

					54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units
Symbol	Parameter								
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay D_n to \overline{O}_n	4.0 2.5	6.7 4.4	9.0 7.0	4.0 2.5	12.0 9.0	4.0 2.5	10.0 8.0	ns
t _{PLH}	Propagation Delay LE to On	5.0 3.0	7.1 4.7	11.0 7.0	5.0 3.0	14.0 9.0	5.0 3.0	13.0 8.0	ns
t _{PZH}	Output Enable Time	2.0 2.0	5.9 5.6	10.0 7.5	2.0 2.0	12.5 10.5	2.0 2.0	11.0 8.5	ns
t _{PHZ}	Output Disable Time	1.5 1.5	3.4 2.7	6.5 5.5	1.5 1.5	8.5 7.5	1.5 1.5	7.0 6.5	ns

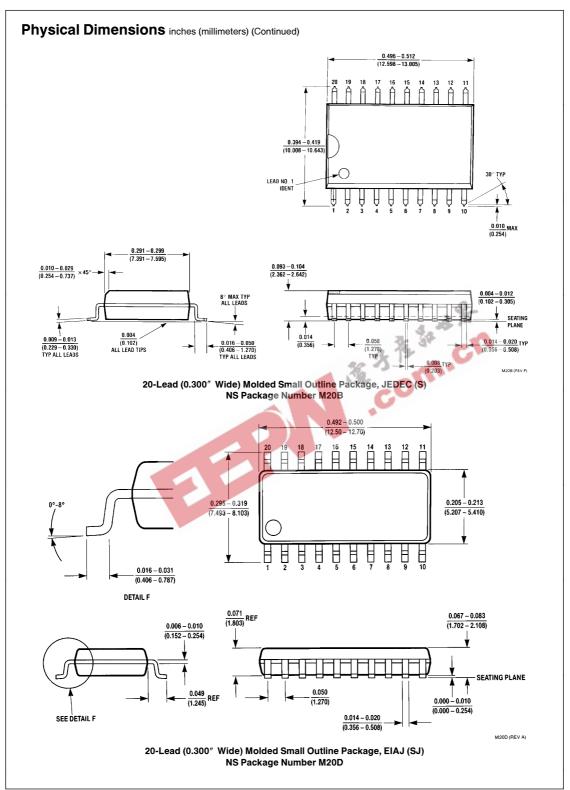
AC Operating Requirements

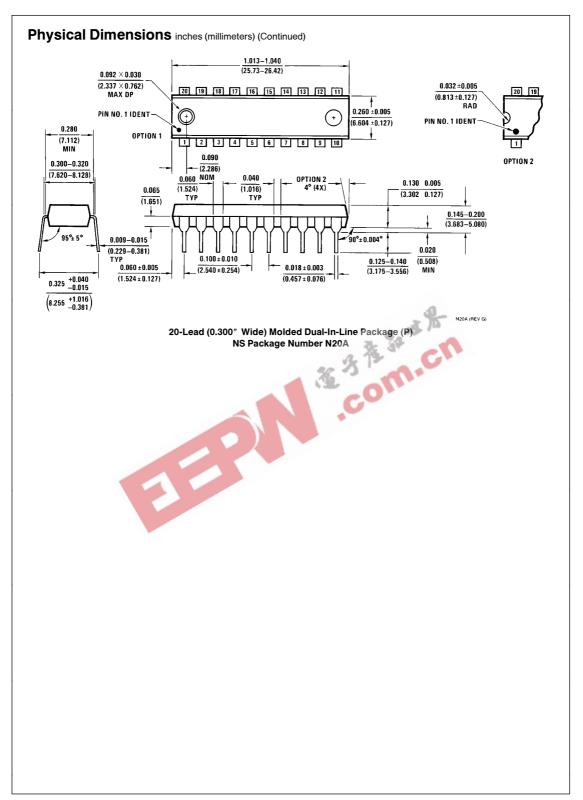
	Parameter	$74F$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		54	=	74F T _A , V _{CC} = Com		Units
Symbol				T _A , V _{CC}	= Mil			
		Min	Max	Min	Max	Min	Max	
t _s (H)	Setup Time, HIGH or LOW D _n to LE	2.0 2.0		2.0 2.0	及為	2.0 2.0	U	ns
t _h (H)	Hold Time, HIGH or LOW D _n to LE	3.0 3.0		3.0 3.0	-0	3.0 3.0		ns
t _w (H)	LE Pulse Width, HIGH	6.0		6.0	0	6.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows:


- Special Variations


X = Devices shipped in 13" reels QB = Military grade device with environmental and burn-in processing shipped in tubes


Temperature Range

 $C = Commercial (0^{\circ}C to +70^{\circ}C)$ $M = Military (-55^{\circ}C to +125^{\circ}C)$

F = Flatpak L = Leadless Chip Carrier (LCC) S = Small Outline SOIC JEDEC SJ = Small Outline SOIC EIAJ

Physical Dimensions inches (millimeters) (Continued) 0.090 0.540 MAX 0.040 0.050 ± 0.005 0.005 MIN TYP 0.030 TYF TYP 0.370 0.250 0.270 0.260 0.285 MAX GLASS 0.012 0.008 DETAIL A 0.370 DETAIL A 0.250 M20A (REY E) PIN #1 IDENT 0.006 0.004 TYP

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240

National Semico GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldt Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1

National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bildg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181

National Semiconduc (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999