

OCTAL D FLIP-FLOP WITH CLEAR

The SN54/74LS273 is a high-speed 8-Bit Register. The register consists of eight D-Type Flip-Flops with a Common Clock and an asynchronous active LOW Master Reset. This device is supplied in a 20-pin package featuring 0.3 inch lead spacing.

- 8-Bit High Speed Register
- Parallel Register
- Common Clock and Master Reset
- Input Clamp Diodes Limit High-Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES	LO	ADING	(Note	a

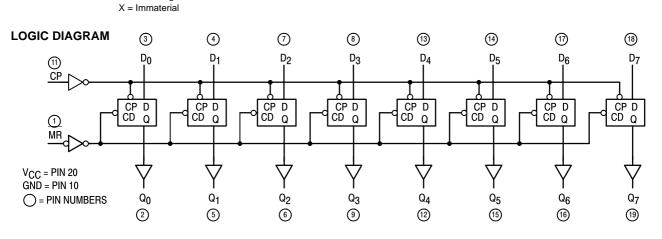
		111011	2011
CP	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.
$D_0 - D_7$	Data Inputs	0.5 U.L.	0.25 U.L.
MR	Master Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.
Q_0-Q_7	Register Outputs (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:

- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

TRUTH TABLE

MR	СР	D _X	Q _X
L	Χ	Х	L
Н		Н	Н
Н	l _┌ │	L	L


H = HIGH Logic Level L = LOW Logic Level

SN54/74LS273

OCTAL D FLIP-FLOP WITH CLEAR

LOW POWER SCHOTTKY

HIGH LOW

SN54/74LS273

FUNCTIONAL DESCRIPTION

The SN54/74LS273 is an 8-Bit Parallel Register with a common Clock and common Master Reset.

When the MR input is LOW, the Q outputs are LOW,

independent of the other inputs. Information meeting the setup and hold time requirements of the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock input.

GUARANTEED OPERATING RANGES

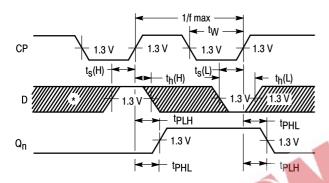
Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ІОН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits		A. 40	-			
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
\/ ₁₁	Input LOW Voltage	54			0.7	V	· ·	LOW Voltage for	
V _{IL}	input LOW voltage	74			0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage			0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
Vou	Output HIGH Voltage	54	2.5	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table		
VOH	Output HIGH Voltage	74	2.7	3.5		V			
Val	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
1	Innut HICH Current				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V		
l IIH	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _I L	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	V _{CC} = MAX	
Icc	Power Supply Current				27	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)


			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
f _{MAX}	Maximum Input Clock Frequency	30	40		MHz	Figure 1
^t PHL	Propagation Delay, MR to Q Output		18	27	ns	Figure 2
^t PLH ^t PHL	Propagation Delay, Clock to Output		17 18	27 27	ns	Figure 1

SN54/74LS273

AC SETUP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Pulse Width, Clock or Clear	20			ns	Figure 1
t _S	Data Setup Time	20			ns	Figure 1
th	Hold Time	5.0			ns	Figure 1
t _{rec}	Recovery Time	25			ns	Figure 2

AC WAVEFORMS

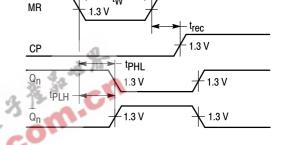
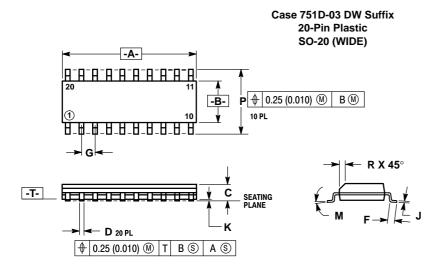


Figure 1. Clock to Output Delays, Clock Pulse Width, Frequency, Setup and Hold Times Data to Clock

Figure 2. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

DEFINITION OF TERMS

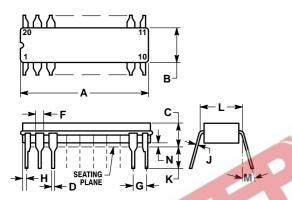

SETUP TIME (t_S) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) — is defined as the minimum time following the clock transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued

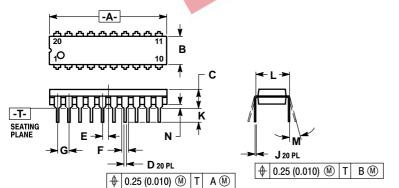
recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW-to-HIGH and still be recognized.

RECOVERY TIME (t_{rec}) — is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

^{*}The shaded areas indicate when the input is permitted to change for predictable output performance.



NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. 3.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- SIDE.
 5. 751D-01, AND -02 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	12.65	12.95	0.499	0.510
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27	BSC	0.050	BSC
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Case 732-03 J Suffix 20-Pin Ceramic Dual In-Line

Case 738-03 N Suffix 20-Pin Plastic

NOTES:

- LEADS WITHIN 0.25 mm (0.010) DIA., TRUE POSITION AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION.
- 2. DIM TO CENTER OF LEADS WHEN FORMED PARALLEL.
 3. DIM A AND B INCLUDES MENISCUS.

10	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
A	23.88	25.15	0.940	0.990	
В	6.60	7.49	0.260	0.295	
С	3.81	5.08	0.150	0.200	
D	0.38	0.56	0.015	0.022	
F	1.40	1.65	0.055	0.065	
G	2.54	BSC	0.100 BSC		
Н	0.51	1.27	0.020	0.050	
J	0.20	0.30	0.008	0.012	
K	3.18	4.06	0.125	0.160	
L	7.62	7.62 BSC		BSC	
M	0°	15°	0°	15°	
N	0.25	1.02	0.010	0.040	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
- DIMENSION "L" TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION "B" DOES NOT INCLUDE MOLD
- 5. 738-02 OBSOLETE, NEW STANDARD 738-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	25.66	27.17	1.010	1.070	
В	6.10	6.60	0.240	0.260	
С	3.81	4.57	0.150	0.180	
D	0.39	0.55	0.015	0.022	
E	1.27	BSC	0.050 BSC		
F	1.27	1.77	0.050	0.070	
G	2.54	BSC	0.100 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.55	0.110	0.140	
L	7.62	7.62 BSC		BSC	
M	0°	15°	0°	15°	
N	0.51	1.01	0.020	0.040	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "" are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, NJAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Ta

SYMBOL	SW1	SW2
tPZH MK14.5BP England	Open	Closed
tPZL	Closed	Open
a Po Industrial Estat tPLZ	Closed	Closed

